Holderian invariance principle for linear processes

被引:0
作者
Juodis, Mindaugas [1 ,2 ]
Rackauskas, Alfredas [1 ,2 ]
Suquet, Charles [3 ]
机构
[1] Vilnius Univ, Dept Math & Informat, LT-2006 Vilnius, Lithuania
[2] Inst Math & Informat, LT-08663 Vilnius, Lithuania
[3] Univ Lille 1, Lab P Painleve, CNRS, UMR 8524, F-59655 Villeneuve Dascq, France
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2009年 / 5卷
关键词
fractional Brownian motion; Holder space; invariance principle; short memory; long memory; linear process; Wiener measure;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (xi(n))(n >= 1) be the polygonal partial sums process built on the linear processes X(n) = Sigma(i >= 0) a(i)is an element of(n-i), where (is an element of(i))(i is an element of Z) are i.i.d., centered and square integrable random variables with Sigma(i >= 0) a(i)(2) <infinity. We investigate functional central limit theorem for xi(n) in the Holder spaces H(alpha)(o)[0, 1] of functions x : [0, 1] -> R such that vertical bar x(t + h) - x(t)vertical bar = o(h(alpha)) uniformly in t. When Sigma(i >= 0) vertical bar a(i)vertical bar < infinity (short memory case), we show that n(-1/2)xi(n) converges weakly in H(alpha)(o)[0, 1] to some Brownian motion under the optimal assumption that P(vertical bar epsilon(0)vertical bar) >= t) = o(t(-p)), where 1/p = 1/2 - alpha. This extends the Lamperti invariance principle for i.i.d. X(n)'s. When a(i) = l(i)i(-beta), 1/2 < beta < 1, with l positive, increasing and slowly varying, (X(n))(n >= 1) has long memory. The limiting process for xi(n) is then the fractional Brownian motion W(H) with Hurst index H = 3/2 - beta and the normalizing constants are b(n) = c(beta)n(H)l(n). For 0 < alpha < H - 1/2, the weak convergence of b(n)(-1)xi(n) to W(H) in H(alpha)(o)[0, 1] is obtained under the mild assumption that Ec(0)(2) < infinity. For H -1/2 < alpha < H, the same convergence is obtained under P(vertical bar c(0)vertical bar) >= t) = o(t(-p)), where 1/p = H - alpha.
引用
收藏
页码:47 / 64
页数:18
相关论文
共 22 条
[1]   INVARIANCE PRINCIPLE FOR STATIONARY PROCESSES [J].
DAVYDOV, YA .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (03) :487-&
[2]  
GORODETSKII VV, 1977, THEOR PROBAB APPL+, V22, P498
[3]  
Hall P., 1980, Martingale limit theory and its application
[4]  
Hamadouche D., 2000, PORT MATH, V57, P127
[5]   Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series [J].
Hosking, JRM .
JOURNAL OF ECONOMETRICS, 1996, 73 (01) :261-284
[6]  
Lamperti J., 1962, T AM MATH SOC, V104, P430, DOI DOI 10.1090/S0002-9947-1962-0143245-1
[7]   Recent advances in invariance principles for stationary sequences [J].
Merlevede, Florence ;
Peligrad, Magda ;
Utev, Sergey .
PROBABILITY SURVEYS, 2006, 3 :1-36
[8]   A new maximal inequality and invariance principle for stationary sequences [J].
Peligrad, M ;
Utev, S .
ANNALS OF PROBABILITY, 2005, 33 (02) :798-815
[9]  
Peligrad M., 2006, IMS LECT NOTES MONOG, V51, P18
[10]   Central limit theorem for stationary linear processes [J].
Peligrad, Magda ;
Utev, Sergey .
ANNALS OF PROBABILITY, 2006, 34 (04) :1608-1622