Sharp Generalized Seiffert Mean Bounds for Toader Mean

被引:43
作者
Chu, Yu-Ming [1 ]
Wang, Miao-Kun [1 ]
Qiu, Song-Liang [2 ]
Qiu, Ye-Fang [1 ]
机构
[1] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
[2] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310018, Peoples R China
关键词
INEQUALITIES;
D O I
10.1155/2011/605259
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For p is an element of [0, 1], the generalized Seiffert mean of two positive numbers a and b is defined by S-p (a, b)=p(a-b)/arctan[2p(a-b)/(a+b)], 0 < p <= 1, a not equal b; (a+b)/2, p=0, a not equal b; a, a=b. In this paper, we find the greatest value a and least value beta such that the double inequality S-a(a, b) < T (a, b) < S-beta(a, b) holds for all a, b > 0 with a not equal b, and give new bounds for the complete elliptic integrals of the second kind. Here, T(a, b)=(2/pi) integral(pi/2)(0) root a(2)cos(2)theta+b(2)sin(2)theta d theta denotes the Toader mean of two positive numbers a and b.
引用
收藏
页数:8
相关论文
共 10 条
[1]   Monotonicity theorems and inequalities for the complete elliptic integrals\ [J].
Alzer, H ;
Qiu, SL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (02) :289-312
[2]  
ANDERSON G. D., 1997, Conformal Invariants, Inequalities, and Quasiconformal Maps
[3]  
[Anonymous], WURZEL
[4]  
[Anonymous], NIEUW ARCH WISK
[5]  
[Anonymous], 2002, J. Inequal. Pure Appl. Math
[6]   A monotonicity property involving 3F2 and comparisons of the classical approximations of elliptical arc length [J].
Barnard, RW ;
Pearce, K ;
Richards, KC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 32 (02) :403-419
[7]   An Optimal Double Inequality between Power-Type Heron and Seiffert Means [J].
Chu, Yu-Ming ;
Wang, Miao-Kun ;
Qiu, Ye-Fang .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
[8]   On certain inequalities for means, III [J].
Sándor, J .
ARCHIV DER MATHEMATIK, 2001, 76 (01) :34-40
[9]   Some mean values related to the arithmetic-geometric mean [J].
Toader, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 218 (02) :358-368
[10]  
VUORINEN M., 1997, SPEC FUNCT DIFF EQ P, P119