Symmetry reductions and exact solutions of the (2+1)-dimensional Camassa-Holm Kadomtsev-Petviashvili equation

被引:19
作者
Wang Zhen-Li [1 ]
Liu Xi-Qiang [1 ]
机构
[1] Liaocheng Univ, Sch Math Sci, Liaocheng 252059, Shandong, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2015年 / 85卷 / 01期
基金
中国国家自然科学基金;
关键词
Lie group method; g-CH-KP equation; symmetry reduction; conservation laws; exact solutions; PERIODIC-SOLUTIONS; CONSERVATION-LAWS; TANH METHOD;
D O I
10.1007/s12043-014-0886-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the classical Lie group method is employed to obtain exact travelling wave solutions of the generalized Camassa-Holm Kadomtsev-Petviashvili (g-CH-KP) equation. We give the conservation laws of the g-CH-KP equation. Using the symmetries, we find six classical similarity reductions of g-CH-KP equation. Many kinds of exact solutions of the g-CH-KP equation are derived by solving the reduced equations.
引用
收藏
页码:3 / 16
页数:14
相关论文
共 23 条
[1]  
Ablowitz M J, 1981, PHILADELPHIA SIAM, V4
[2]   A generalized variable-coefficient algebraic method exactly solving (3+1)-dimensional Kadomtsev-Petviashvilli equation [J].
Bai, CL ;
Bai, CJ ;
Hong, Z .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (05) :821-826
[3]   1-Soliton solution of the generalized Camassa-Holm Kadomtsev-Petviashvili equation [J].
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (06) :2524-2527
[4]   Numerical study of nonlinear Schrodinger and coupled Schrodinger equations by differential transformation method [J].
Borhanifar, A. ;
Abazari, Reza .
OPTICS COMMUNICATIONS, 2010, 283 (10) :2026-2031
[5]  
Borhanifar A., 2011, WORLD APPL SCI J, V13, P2405
[6]   Variational iteration method - Some recent results and new interpretations [J].
He, Ji-Huan .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 207 (01) :3-17
[7]   Exp-function method for nonlinear wave equations [J].
He, Ji-Huan ;
Wu, Xu-Hong .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :700-708
[8]  
Hosseini MM., 2010, STUDIES NONLIN SCI, V1, P50
[9]   KADOMSTEV-PETVIASHVILE AND 2-DIMENSIONAL SINE-GORDON EQUATIONS - REDUCTION TO PAINLEVE TRANSCENDENTS [J].
KALIAPPAN, P ;
LAKSHMANAN, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (10) :L249-L252
[10]   The tanh method: A tool for solving certain classes of non-linear PDEs [J].
Malfliet, W .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (17) :2031-2035