Selective Coke Combustion by Oxygen Pulsing During Mo/ZSM-5-Catalyzed Methane Dehydroaromatization

被引:102
作者
Kosinov, Nikolay [1 ]
Coumans, Ferdy J. A. G. [1 ]
Uslamin, Evgeny [1 ]
Kapteijn, Freek [2 ]
Hensen, Emiel J. M. [1 ]
机构
[1] Eindhoven Univ Technol, Lab Inorgan Mat Chem, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Delft Univ Technol, ChemE, Catalysis Engn, van der Maasweg 9, NL-2629 HZ Delft, Netherlands
关键词
arenes; catalyst deactivation; catalyst regeneration; methane dehydroaromatization; Mo/HZSM-5; DIRECT CONVERSION; NATURAL-GAS; MO/HMCM-22; CATALYSTS; MO/HZSM-5; MEMBRANE REACTOR; AROMATIZATION; BENZENE; MOLYBDENUM; MO/H-ZSM-5; CHEMISTRY;
D O I
10.1002/anie.201609442
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Non-oxidative methane dehydroaromatization is a promising reaction to directly convert natural gas into aromatic hydrocarbons and hydrogen. Commercialization of this technology is hampered by rapid catalyst deactivation because of coking. A novel approach is presented involving selective oxidation of coke during methane dehydroaromatization at 700 degrees C. Periodic pulsing of oxygen into the methane feed results in substantially higher cumulative product yield with synthesis gas; a H-2/CO ratio close to two is the main side-product of coke combustion. Using C-13 isotope labeling of methane it is demonstrated that oxygen predominantly reacts with molybdenum carbide species. The resulting molybdenum oxides catalyze coke oxidation. Less than one-fifth of the available oxygen reacts with gaseous methane. Combined with periodic regeneration at 550 degrees C, this strategy is a significant step forward, towards a process for converting methane into liquid hydrocarbons.
引用
收藏
页码:15086 / 15090
页数:5
相关论文
共 45 条
[1]   Shape selectivity in methane dehydroaromatization over Mo/MCM-22 catalysts during a lifetime experiment [J].
Bai, J ;
Liu, SL ;
Xie, SJ ;
Xu, LY ;
Lin, LW .
CATALYSIS LETTERS, 2003, 90 (3-4) :123-130
[2]   AROMATIZATION OF METHANE ON PENTASIL-CONTAINING CATALYSTS [J].
BRAGIN, OV ;
VASINA, TV ;
PREOBRAZHENSKII, AV ;
MINACHEV, KM .
BULLETIN OF THE ACADEMY OF SCIENCES OF THE USSR DIVISION OF CHEMICAL SCIENCE, 1989, 38 (03) :680-680
[3]  
Cao Z., 2013, Angewandte Chemie, V125, P14039
[4]   Natural Gas to Fuels and Chemicals: Improved Methane Aromatization in an Oxygen-Permeable Membrane Reactor [J].
Cao, Zhengwen ;
Jiang, Heqing ;
Luo, Huixia ;
Baumann, Stefan ;
Meulenberg, Wilhelm A. ;
Assmann, Jens ;
Mleczko, Leslaw ;
Liu, Yi ;
Caro, Juergen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (51) :13794-13797
[5]  
Dittrich C., 2015, Patent No. 2015082375
[6]   Catalysts for Production of Lower Olefins from Synthesis Gas: A Review [J].
Galvis, Hirsa M. Torres ;
de Jong, Krijn P. .
ACS CATALYSIS, 2013, 3 (09) :2130-2149
[7]   Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion [J].
Gao, Jie ;
Zheng, Yiteng ;
Jehng, Jih-Mirn ;
Tang, Yadan ;
Wachs, Israel E. ;
Podkolzin, Simon G. .
SCIENCE, 2015, 348 (6235) :686-690
[8]   Organic chemistry of coke formation [J].
Guisnet, M ;
Magnoux, P .
APPLIED CATALYSIS A-GENERAL, 2001, 212 (1-2) :83-96
[9]   Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen [J].
Guo, Xiaoguang ;
Fang, Guangzong ;
Li, Gang ;
Ma, Hao ;
Fan, Hongjun ;
Yu, Liang ;
Ma, Chao ;
Wu, Xing ;
Deng, Dehui ;
Wei, Mingming ;
Tan, Dali ;
Si, Rui ;
Zhang, Shuo ;
Li, Jianqi ;
Sun, Litao ;
Tang, Zichao ;
Pan, Xiulian ;
Bao, Xinhe .
SCIENCE, 2014, 344 (6184) :616-619
[10]  
Iaccino L. L., 2010, Process for methane conversion, Patent No. [US7781636 B2, 7781636]