Computation of the eigenvalues of the Schrodinger equation by exponentially-fitted Runge-Kutta-Nystrom methods

被引:20
作者
Kalogiratou, Z. [1 ]
Monovasilis, Th. [2 ]
Simos, T. E.
机构
[1] Technol Educ Inst Western Macedonia Kastoria, Dept Informat & Comp Technol, Kastoria 52100, Greece
[2] Technol Educ Inst Western Macedonia Kastoria, Dept Int Trade, Kastoria 52100, Greece
关键词
Runge-Kutta-Nystrom methods; Schrodinger equation; Trigonometrically fitted; INITIAL-VALUE PROBLEMS; NUMERICAL-INTEGRATION; OSCILLATING SOLUTIONS;
D O I
10.1016/j.cpc.2008.09.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work we consider exponentially fitted and trigonometrically fitted Runge-Kutta-Nystrom methods. These methods integrate exactly differential systems whose solutions can be expressed as linear combinations of the set of functions exp(wx), exp(-wx), or sin(wx), cos(wx), w epsilon N. We modify existing RKN methods of fifth and sixth order. We apply these methods to the computation of the eigenvalues of the Schrodinger equation with different potentials as the harmonic oscillator, the doubly anharmonic oscillator and the exponential potential. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:167 / 176
页数:10
相关论文
共 19 条
  • [1] [Anonymous], J NUMER ANAL IND APP
  • [2] CAPPER SD, 2006, J NUMERICAL ANAL IND, V1, P13
  • [3] CASH JR, 2006, J NUMERICAL ANAL IND, V1, P59
  • [4] DEWAR M, 2008, JNAIAM J NUMER ANAL, V3, P17
  • [5] FAMILIES OF RUNGE-KUTTA-NYSTROM FORMULAS
    DORMAND, JR
    ELMIKKAWY, MEA
    PRINCE, PJ
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) : 235 - 250
  • [6] Exponentially fitted explicit Runge-Kutta-Nystrom methods
    Franco, JM
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (01) : 1 - 19
  • [7] HAIRER E, 2002, SOLVING ORDINARY DIF, V1
  • [8] Ixaru L.Gr., 2004, Exponential Fitting. Kluwer Academic Publishers
  • [9] Kierzenka J., 2008, JNAIAM J. Numer. Anal. Ind. Appl. Math, V3, P27, DOI [10.1098/rsif.2022.0325, DOI 10.1098/RSIF.2022.0325]
  • [10] Knapp R., 2008, J. Numer. Anal. Indust. Appl. Math, V3, P43