Computation of the eigenvalues of the Schrodinger equation by exponentially-fitted Runge-Kutta-Nystrom methods

被引:20
|
作者
Kalogiratou, Z. [1 ]
Monovasilis, Th. [2 ]
Simos, T. E.
机构
[1] Technol Educ Inst Western Macedonia Kastoria, Dept Informat & Comp Technol, Kastoria 52100, Greece
[2] Technol Educ Inst Western Macedonia Kastoria, Dept Int Trade, Kastoria 52100, Greece
关键词
Runge-Kutta-Nystrom methods; Schrodinger equation; Trigonometrically fitted; INITIAL-VALUE PROBLEMS; NUMERICAL-INTEGRATION; OSCILLATING SOLUTIONS;
D O I
10.1016/j.cpc.2008.09.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work we consider exponentially fitted and trigonometrically fitted Runge-Kutta-Nystrom methods. These methods integrate exactly differential systems whose solutions can be expressed as linear combinations of the set of functions exp(wx), exp(-wx), or sin(wx), cos(wx), w epsilon N. We modify existing RKN methods of fifth and sixth order. We apply these methods to the computation of the eigenvalues of the Schrodinger equation with different potentials as the harmonic oscillator, the doubly anharmonic oscillator and the exponential potential. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:167 / 176
页数:10
相关论文
共 50 条
  • [1] Computation of the eigenvalues of the schrodinger equation by exponentially-fitted Runge-Kutta-nystrom methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 372 - +
  • [2] Exponentially fitted explicit Runge-Kutta-Nystrom methods
    Franco, JM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (01) : 1 - 19
  • [3] Exponentially Fitted Symplectic Runge-Kutta-Nystrom methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 81 - 85
  • [4] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1395 - 1398
  • [5] Revised exponentially fitted Runge-Kutta-Nystrom methods
    D'Ambrosio, R.
    Paternoster, B.
    Santomauro, G.
    APPLIED MATHEMATICS LETTERS, 2014, 30 : 56 - 60
  • [6] Embedded Exponentially-Fitted Explicit Runge-Kutta-Nystrom Methods for Solving Periodic Problems
    Demba, Musa Ahmed
    Kumam, Poom
    Watthayu, Wiboonsak
    Phairatchatniyom, Pawicha
    COMPUTATION, 2020, 8 (02)
  • [7] On the generation of P-stable exponentially fitted Runge-Kutta-Nystrom methods by exponentially fitted Runge-Kutta methods
    Van de Vyver, H
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 188 (02) : 309 - 318
  • [8] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods Derived by Partitioned Runge-Kutta Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1181 - 1185
  • [9] Functionally fitted Runge-Kutta-Nystrom methods
    Hoang, N. S.
    Sidje, R. B.
    BIT NUMERICAL MATHEMATICS, 2016, 56 (01) : 129 - 150
  • [10] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, Th
    Kalogiratou, Z.
    Simos, T. E.
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 843 - 849