Historical (1850-2014) Aerosol Evolution and Role on Climate Forcing Using the GISS ModelE2.1 Contribution to CMIP6

被引:91
作者
Bauer, Susanne E. [1 ]
Tsigaridis, Kostas [1 ,2 ]
Faluvegi, Greg [1 ,2 ]
Kelley, Maxwell [1 ,3 ]
Lo, Ken K. [1 ,3 ]
Miller, Ron L. [1 ]
Nazarenko, Larissa [1 ,2 ]
Schmidt, Gavin A. [1 ]
Wu, Jingbo [1 ,4 ]
机构
[1] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[2] Columbia Univ, Ctr Climate Syst Res, New York, NY USA
[3] SciSpace LLC, New York, NY USA
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
关键词
aerosol forcing</AUTHOR_KEYWORD>; GISS model</AUTHOR_KEYWORD>; CMIP6 historical simulation</AUTHOR_KEYWORD>; aerosol microphysics</AUTHOR_KEYWORD>; SECONDARY ORGANIC AEROSOL; ENERGY SYSTEM CERES; COLLECTION; 6; MODIS; ICE CORE RECORD; OPTICAL DEPTH; SATELLITE-OBSERVATIONS; MINERAL-COMPOSITION; GODDARD-INSTITUTE; DUST AEROSOLS; MIXING STATE;
D O I
10.1029/2019MS001978
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The Earth's climate is rapidly changing. Over the past centuries, aerosols, via their ability to absorb or scatter solar radiation and alter clouds, played an important role in counterbalancing some of the greenhouse gas (GHG) caused global warming. The multicentury anthropogenic aerosol cooling effect prevented present-day climate from reaching even higher surface air temperatures and subsequent more dramatic climate impacts. Trends in aerosol concentrations and optical depth show that in many polluted regions such as Europe and the United States, aerosol precursor emissions decreased back to levels of the 1950s. More recent polluting countries such as China may have reached a turning point in recent years as well, while India still follows an upward trend. Here we study aerosol trends in the Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations of the GISS ModelE2.1 climate model using a fully coupled atmosphere composition configuration, including interactive gas-phase chemistry and either an aerosol microphysical (MATRIX) or a mass-based (One-Moment Aerosol, OMA) aerosol module. Results show that whether global aerosol radiative forcing is already declining depends on the aerosol scheme used. Using the aerosol microphysical scheme, where the aerosol system reacts more strongly to the trend in sulfur dioxide (SO2) emissions, global peak direct aerosol forcing was reached in the 1980s, whereas the mass-based scheme simulates peak direct aerosol forcing around 2010.
引用
收藏
页数:22
相关论文
共 104 条
  • [21] Irrigation as an historical climate forcing
    Cook, Benjamin I.
    Shukla, Sonali P.
    Puma, Michael J.
    Nazarenko, Larissa S.
    [J]. CLIMATE DYNAMICS, 2015, 44 (5-6) : 1715 - 1730
  • [22] Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
    Eyring, Veronika
    Bony, Sandrine
    Meehl, Gerald A.
    Senior, Catherine A.
    Stevens, Bjorn
    Stouffer, Ronald J.
    Taylor, Karl E.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (05) : 1937 - 1958
  • [23] Can MODIS detect trends in aerosol optical depth over land?
    Fan, Xuehua
    Xia, Xiang'ao
    Chen, Hongbin
    [J]. ADVANCES IN ATMOSPHERIC SCIENCES, 2018, 35 (02) : 135 - 145
  • [24] Climatology and trends of aerosol optical depth over the Mediterranean basin during the last 12 years (2002-2014) based on Collection 006 MODIS-Aqua data
    Floutsi, A. A.
    Korras-Carraca, M. B.
    Matsoukas, C.
    Hatzianastassiou, N.
    Biskos, G.
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 551 : 292 - 303
  • [25] Can semi-volatile organic aerosols lead to fewer cloud particles?
    Gao, Chloe Y.
    Bauer, Susanne E.
    Tsigaridis, Kostas
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (19) : 14243 - 14251
  • [26] MATRIX-VBS (v1.0): implementing an evolving organic aerosol volatility in an aerosol microphysics model
    Gao, Chloe Y.
    Tsigaridis, Kostas
    Bauer, Susanne E.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (02) : 751 - 764
  • [27] A PHOTOCHEMICAL KINETICS MECHANISM FOR URBAN AND REGIONAL SCALE COMPUTER MODELING
    GERY, MW
    WHITTEN, GZ
    KILLUS, JP
    DODGE, MC
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1989, 94 (D10) : 12925 - 12956
  • [28] High Climate Sensitivity in the Community Earth System Model Version 2 (CESM2)
    Gettelman, A.
    Hannay, C.
    Bacmeister, J. T.
    Neale, R. B.
    Pendergrass, A. G.
    Danabasoglu, G.
    Lamarque, J-F
    Fasullo, J. T.
    Bailey, D. A.
    Lawrence, D. M.
    Mills, M. J.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (14) : 8329 - 8337
  • [29] Technical Note: Estimating aerosol effects on cloud radiative forcing
    Ghan, S. J.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (19) : 9971 - 9974
  • [30] The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution
    Golaz, Jean-Christophe
    Caldwell, Peter M.
    Van Roekel, Luke P.
    Petersen, Mark R.
    Tang, Qi
    Wolfe, Jonathan D.
    Abeshu, Guta
    Anantharaj, Valentine
    Asay-Davis, Xylar S.
    Bader, David C.
    Baldwin, Sterling A.
    Bisht, Gautam
    Bogenschutz, Peter A.
    Branstetter, Marcia
    Brunke, Michael A.
    Brus, Steven R.
    Burrows, Susannah M.
    Cameron-Smith, Philip J.
    Donahue, Aaron S.
    Deakin, Michael
    Easter, Richard C.
    Evans, Katherine J.
    Feng, Yan
    Flanner, Mark
    Foucar, James G.
    Fyke, Jeremy G.
    Griffin, Brian M.
    Hannay, Ccile
    Harrop, Bryce E.
    Hoffman, Mattthew J.
    Hunke, Elizabeth C.
    Jacob, Robert L.
    Jacobsen, Douglas W.
    Jeffery, Nicole
    Jones, Philip W.
    Keen, Noel D.
    Klein, Stephen A.
    Larson, Vincent E.
    Leung, L. Ruby
    Li, Hong-Yi
    Lin, Wuyin
    Lipscomb, William H.
    Ma, Po-Lun
    Mahajan, Salil
    Maltrud, Mathew E.
    Mametjanov, Azamat
    McClean, Julie L.
    McCoy, Renata B.
    Neale, Richard B.
    Price, Stephen F.
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (07) : 2089 - 2129