Comparative Proteomic and Physiological Analyses Reveal the Protective Effect of Exogenous Polyamines in the Bermudagrass (Cynodon dactylon) Response to Salt and Drought Stresses

被引:109
|
作者
Shi, Haitao [1 ]
Ye, Tiantian [1 ,2 ]
Chan, Zhulong [1 ]
机构
[1] Chinese Acad Sci, Wuhan Bot Garden, Key Lab Plant Germplasm Enhancement & Specialty A, Wuhan 430074, Hubei, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
基金
中国国家自然科学基金;
关键词
bermudagrass (Cynodon dactylon); polyamine; putrescine; spermidine; spermine; proteomic; salt; drought; ABIOTIC STRESS; PHOTOSYNTHETIC APPARATUS; LIPID-PEROXIDATION; SOYBEAN SEEDLINGS; CUCUMIS-SATIVUS; SALICYLIC-ACID; NITRIC-OXIDE; TOLERANCE; ARABIDOPSIS; PUTRESCINE;
D O I
10.1021/pr400479k
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Polyamines conferred enhanced abiotic stress tolerance in multiple plant species. However, the effect of polyamines on abiotic stress and physiological change in bermudagrass, the most widely used warm-season turfgrasses, are unknown. In this study, pretreatment of exogenous polyamine conferred increased salt and drought tolerances in bermudagrass. Comparative proteomic analysis was performed to further investigate polyamines mediated responses, and 36 commonly regulated proteins by at least two types of polyamines in bermudagrass were successfully identified, including 12 proteins with increased level, 20 proteins with decreased level and other 4 specifically expressed proteins. Among them, proteins involved in electron transport and energy pathways were largely enriched, and nucleoside diphosphate kinase (NDPK) and three antioxidant enzymes were extensively regulated by polyamines. Dissection of reactive oxygen species (ROS) levels indicated that polyamine-derived H2O2 production might play dual roles under abiotic stress conditions. Moreover, accumulation of osmolytes was also observed after application of exogenous polyamines, which is consistent with proteomics results that several proteins involved in carbon fixation pathway were mediated commonly by polyamines pretreatment. Taken together, we proposed that polyamines could activate multiple pathways that enhance bermudagrass adaption to salt and drought stresses. These findings might be applicable for genetically engineering of grasses and crops to improve stress tolerance.
引用
收藏
页码:4951 / 4964
页数:14
相关论文
共 24 条
  • [1] Comparative proteomic and physiological analyses reveal the protective effect of exogenous calcium on the germinating soybean response to salt stress
    Yin, Yongqi
    Yang, Runqiang
    Han, Yongbin
    Gu, Zhenxin
    JOURNAL OF PROTEOMICS, 2015, 113 : 110 - 126
  • [2] Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon (L.) Pers.) by exogenous calcium
    Shi, Haitao
    Ye, Tiantian
    Zhong, Bao
    Liu, Xun
    Chan, Zhulong
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2014, 56 (11) : 1064 - 1079
  • [3] Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon(L.) Pers.) by exogenous calcium
    Haitao Shi
    Tiantian Ye
    Bao Zhong
    Xun Liu
    Zhulong Chan
    Journal of Integrative Plant Biology, 2014, 56 (11) : 1064 - 1079
  • [4] Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin
    Shi, Haitao
    Jiang, Chuan
    Ye, Tiantian
    Tan, Dun-Xian
    Reiter, Russel J.
    Zhang, Heng
    Liu, Renyi
    Chan, Zhulong
    JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (03) : 681 - 694
  • [5] Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in Bermuda grass (Cynodon dactylon (L). Pers.)
    Shi, Haitao
    Wang, Xin
    Tan, Dun-Xian
    Reiter, Russel J.
    Chan, Zhulong
    JOURNAL OF PINEAL RESEARCH, 2015, 59 (01) : 120 - 131
  • [6] Physiological and proteomic analyses reveal the protective roles of exogenous hydrogen peroxide in alleviating drought stress in soybean plants
    Rahman, Md Atikur
    Alam, Iftekhar
    Sharmin, Shamima Akhtar
    Kabir, Ahmad Humayan
    Kim, Yong-Goo
    Liu, Gongshe
    Lee, Byung-Hyun
    PLANT BIOTECHNOLOGY REPORTS, 2021, 15 (06) : 805 - 818
  • [7] Physiological and proteomic analyses reveal the protective roles of exogenous hydrogen peroxide in alleviating drought stress in soybean plants
    Md Atikur Rahman
    Iftekhar Alam
    Shamima Akhtar Sharmin
    Ahmad Humayan Kabir
    Yong-Goo Kim
    Gongshe Liu
    Byung-Hyun Lee
    Plant Biotechnology Reports, 2021, 15 : 805 - 818
  • [8] Comparative proteomic responses of two bermudagrass (Cynodon dactylon (L). Pers.) varieties contrasting in drought-stress resistance
    Shi, Haitao
    Ye, Tiantian
    Chan, Zhulong
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2014, 82 : 218 - 228
  • [9] In vitro selection of salinity tolerant variants from triploid bermudagrass (Cynodon transvaalensis × C. dactylon) and their physiological responses to salt and drought stress
    Shaoyun Lu
    Xinxiang Peng
    Zhenfei Guo
    Gengyun Zhang
    Zhongcheng Wang
    Congying Wang
    Chaoshu Pang
    Zhen Fan
    Jihua Wang
    Plant Cell Reports, 2007, 26 : 1413 - 1420
  • [10] In vitro selection of salinity tolerant variants from triploid bermudagrass (Cynodon transvaalensis x C-dactylon) and their physiological responses to salt and drought stress
    Lu, Shaoyun
    Peng, Xinxiang
    Guo, Zhenfei
    Zhang, Gengyun
    Wang, Zhongcheng
    Wang, Congying
    Pang, Chaoshu
    Fan, Zhen
    Wang, Jihua
    PLANT CELL REPORTS, 2007, 26 (08) : 1413 - 1420