High-Frequency Subband Compressed Sensing MRI Using Quadruplet Sampling

被引:17
作者
Sung, Kyunghyun [1 ,2 ]
Hargreaves, Brian A. [1 ]
机构
[1] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[2] Univ Calif Los Angeles, Dept Radiol Sci, Los Angeles, CA 90095 USA
关键词
image reconstruction; compressed sensing; wavelet transformation; parallel imaging; iterative reconstruction; TREE APPROXIMATION; WAVELET TRANSFORM; K-SPACE; RECONSTRUCTION; ALGORITHMS; RECOVERY; FOCUSS; DOMAIN;
D O I
10.1002/mrm.24592
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo present and validate a new method that formalizes a direct link between k-space and wavelet domains to apply separate undersampling and reconstruction for high- and low-spatial-frequency k-space data. Theory and MethodsHigh- and low-spatial-frequency regions are defined in k-space based on the separation of wavelet subbands, and the conventional compressed sensing problem is transformed into one of localized k-space estimation. To better exploit wavelet-domain sparsity, compressed sensing can be used for high-spatial-frequency regions, whereas parallel imaging can be used for low-spatial-frequency regions. Fourier undersampling is also customized to better accommodate each reconstruction method: random undersampling for compressed sensing and regular undersampling for parallel imaging. ResultsExamples using the proposed method demonstrate successful reconstruction of both low-spatial-frequency content and fine structures in high-resolution three-dimensional breast imaging with a net acceleration of 11-12. ConclusionThe proposed method improves the reconstruction accuracy of high-spatial-frequency signal content and avoids incoherent artifacts in low-spatial-frequency regions. This new formulation also reduces the reconstruction time due to the smaller problem size. Magn Reson Med 70:1306-1318, 2013. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:1306 / 1318
页数:13
相关论文
共 50 条
[41]   Golden-Angle Radial Sparse Parallel MRI: Combination of Compressed Sensing, Parallel Imaging, and Golden-Angle Radial Sampling for Fast and Flexible Dynamic Volumetric MRI [J].
Feng, Li ;
Grimm, Robert ;
Block, Kai Tobias ;
Chandarana, Hersh ;
Kim, Sungheon ;
Xu, Jian ;
Axel, Leon ;
Sodickson, Daniel K. ;
Otazo, Ricardo .
MAGNETIC RESONANCE IN MEDICINE, 2014, 72 (03) :707-717
[42]   Feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory [J].
Wang, Haoyu ;
Miao, Yanwei ;
Zhou, Kun ;
Yu, Yanming ;
Bao, Shanglian ;
He, Qiang ;
Dai, Yongming ;
Xuan, Stephanie Y. ;
Tarabishy, Bisher ;
Ye, Yongquan ;
Hu, Jiani .
MEDICAL PHYSICS, 2010, 37 (09) :4971-4981
[43]   Dynamic MRI with Compressed Sensing imaging using temporal correlations [J].
Ji, Jim ;
Lang, Tao .
2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, :1613-1616
[44]   Distributed Compressed Sensing MRI Using Volume Array Coil [J].
Feng, Zhen ;
Liu, Feng ;
Guo, He ;
Chen, Zhikui ;
Jiang, Mingfeng ;
Hong, Mingjian ;
Jia, Qi .
INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2013,
[45]   Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data [J].
Karlsons, K. ;
De Kort, D. W. ;
Sederman, A. J. ;
Mantle, M. D. ;
De Jong, H. ;
Appel, M. ;
Gladden, L. F. .
JOURNAL OF MICROSCOPY, 2019, 276 (02) :63-81
[46]   Two-Dimensional Compressed Sensing Using the Cross-sampling Approach for Low-Field MRI Systems [J].
Tamada, Daiki ;
Kose, Katsumi .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (09) :1905-1912
[47]   Accelerating PS model-based dynamic cardiac MRI using compressed sensing [J].
Zhang, Xiaoyong ;
Xie, Guoxi ;
Shi, Caiyun ;
Su, Shi ;
Zhang, Yongqin ;
Liu, Xin ;
Qiu, Bensheng .
MAGNETIC RESONANCE IMAGING, 2016, 34 (02) :81-90
[48]   COMPRESSED SENSING MRI USING TOTAL VARIATION REGULARIZATION WITH K-SPACE DECOMPOSITION [J].
Sun, Liyan ;
Huang, Yue ;
Cai, Congbo ;
Ding, Xinghao .
2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, :3061-3065
[49]   Efficient Compressed Sensing Based MRI Reconstruction using Nonconvex Total Variation Penalties [J].
Lazzaro, D. ;
Piccolomini, E. Loli ;
Zama, F. .
6TH INTERNATIONAL WORKSHOP ON NEW COMPUTATIONAL METHODS FOR INVERSE PROBLEMS, 2016, 756
[50]   High-Frequency Space Diffusion Model for Accelerated MRI [J].
Cao, Chentao ;
Cui, Zhuo-Xu ;
Wang, Yue ;
Liu, Shaonan ;
Chen, Taijin ;
Zheng, Hairong ;
Liang, Dong ;
Zhu, Yanjie .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (05) :1853-1865