THE HARNACK INEQUALITY FOR SECOND-ORDER ELLIPTIC EQUATIONS WITH DIVERGENCE-FREE DRIFTS

被引:12
作者
Ignatova, Mihaela [1 ]
Kukavica, Igor [2 ]
Ryzhik, Lenya [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
Harnack inequality; Liouville theorem; regularity; drift-diffusion equations; DIFFUSION;
D O I
10.4310/CMS.2014.v12.n4.a4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an elliptic equation with a divergence-free drift b. We prove that an inequality of Harnack type holds under the assumption b is an element of Ln/2+delta where delta > 0. As an application we provide a one-sided Liouville's theorem provided that b is an element of Ln/2+delta (R-n).
引用
收藏
页码:681 / 694
页数:14
相关论文
共 16 条
  • [1] THE EXPLOSION PROBLEM IN A FLOW
    Berestycki, Henri
    Kiselev, Alexander
    Novikov, Alexei
    Ryzhik, Lenya
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2010, 110 : 31 - 65
  • [2] THE DE GIORGI METHOD FOR REGULARITY OF SOLUTIONS OF ELLIPTIC EQUATIONS AND ITS APPLICATIONS TO FLUID DYNAMICS
    Caffarelli, Luis A.
    Vasseur, Alexis F.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2010, 3 (03): : 409 - 427
  • [3] Caffarelli LA, 2010, ANN MATH, V171, P1903
  • [4] Diffusion and mixing in fluid flow
    Constantin, P.
    Kiselev, A.
    Ryzhik, L.
    Zlatos, A.
    [J]. ANNALS OF MATHEMATICS, 2008, 168 (02) : 643 - 674
  • [5] De Giorgi E., 1957, Mem. Acad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., V3, P25
  • [6] Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics
    Friedlander, Susan
    Vicol, Vlad
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (02): : 283 - 301
  • [7] Giaquinta M., 1993, LECT MATH
  • [8] Untitled
    Han, Q.
    Wen, B.
    Babitsky, V. I.
    Silberschmidt, V. V.
    [J]. SHOCK AND VIBRATION, 2011, 18 (1-2) : 1 - 1
  • [9] Liouville theorems for the Navier-Stokes equations and applications
    Koch, Gabriel
    Nadirashvili, Nikolai
    Seregin, Gregory A.
    Sverak, Vladimir
    [J]. ACTA MATHEMATICA, 2009, 203 (01) : 83 - 105
  • [10] Kukavica I, 1999, INDIANA U MATH J, V48, P1057