Closed form representations and properties of the generalised Wendland functions

被引:20
作者
Chernih, Andrew [1 ]
Hubbert, Simon [2 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Kensington, NSW 2052, Australia
[2] Birkbeck Coll, Sch Econ Math & Stat, London WC1E 7HX, England
关键词
D O I
10.1016/j.jat.2013.09.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the generalisation of Wendland's compactly supported radial basis functions to the case where the smoothness parameter is not assumed to be a positive integer or half-integer and the parameter l, which is chosen to ensure positive definiteness, need not take on the minimal value. We derive sufficient and necessary conditions for the generalised Wendland functions to be positive definite and deduce the native spaces that they generate. We also provide closed form representations for the generalised Wendland functions in the case when the smoothness parameter is an integer and where the parameter l is any suitable value that ensures positive definiteness, as well as closed form representations for the Fourier transform when the smoothness parameter is a positive integer or half-integer. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:17 / 33
页数:17
相关论文
共 17 条
[1]  
Abramowitz M., 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables, DOI DOI 10.1119/1.15378
[2]   Minimal degree univariate piecewise polynomials with prescribed Sobolev regularity [J].
Al-Rashdan, Amal ;
Johnson, Michael J. .
JOURNAL OF APPROXIMATION THEORY, 2012, 164 (01) :1-5
[3]  
[Anonymous], 1992, Integrals and Series
[4]  
[Anonymous], 2011, TECHNICAL REPORT
[5]  
[Anonymous], ROCKY MOUNTAIN J MAT
[6]  
[Anonymous], 2007, MESHFREE APPROXIMATI
[7]  
Babister AW., 1967, Transcendental Functions Satisfying Nonhomogeneous Linear Differential Equations
[8]  
De Marchi S, 2009, DOLOMIT RES NOTES AP, V2, P16
[9]   POSITIVITY OF SOME F-1(2) S [J].
FIELDS, JL ;
ELHOUSSIENYISMAIL, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1975, 6 (03) :551-559
[10]   Compactly supported correlation functions [J].
Gneiting, T .
JOURNAL OF MULTIVARIATE ANALYSIS, 2002, 83 (02) :493-508