Roles of Alkaline Earth Ions in Garnet-Type Superionic Conductors

被引:30
作者
Song, Shufeng [1 ]
Kotobuki, Masashi [2 ]
Zheng, Feng [2 ]
Xu, Chaohe [1 ]
Wang, Yu [3 ]
Li, Wei Dong Z.
Hu, Ning [1 ,5 ]
Lu, Li [2 ,4 ]
机构
[1] Chongqing Univ, Coll Aerosp Engn, Chongqing 400044, Peoples R China
[2] Natl Univ Singapore, Dept Mech Engn, Singapore 117575, Singapore
[3] Chongqing Univ, Sch Chem & Chem Engn, Chongqing 400044, Peoples R China
[4] Natl Univ Singapore Suzhou Res Inst, Suzhou 215000, Peoples R China
[5] Univ Chongqing, State Key Lab Mech Transmiss, Chongqing 400044, Chongqing, Peoples R China
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金; 新加坡国家研究基金会;
关键词
alkaline earth metals; garnet; conductivity; magnesium; conducting materials; DOPED LI7LA3ZR2O12; CRYSTAL-STRUCTURE; LI+ CONDUCTIVITY; LITHIUM; ELECTROLYTE; PERFORMANCE; STABILITY; OXIDES; BA; NB;
D O I
10.1002/celc.201600639
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The roles of alkaline earth ions in garnet-type superionic conductors Li7.1La3Zr1.95M0.05O12 (M=Mg, Sr, Ba) are further investigated. In contrast to previous reports, the alkaline earth ions are specifically allocated to the octahedral sites (Zr4+ sites) instead of dodecahedral sites (La3+ sites) in the present work. The alkaline-earth-ion-doped Li7.1La3Zr1.95M0.05O12 garnets exhibit enhanced room-temperature conductivities with the increasing ionic radii of alkaline-earth ions. Ba-doped Li7.1La3Zr1.95Ba0.05O12 provides the highest conductivity of 1.13x10(-3)S cm(-1) at room temperature, whereas Mg- and Sr-doped garnets show conductivities of 4.32x10(-4) and 8.91x10(-4)S cm(-1) at room temperature, respectively. The obtained ionic conductivities are comparable to other promising superionic conductors that are already known. Moreover, the alkaline-earth-ion-doped garnets demonstrate a wide electrochemical stability window of 9V vs. Li/Li+, and stability against metallic lithium by means of symmetric galvanostatic cycling.
引用
收藏
页码:266 / 271
页数:6
相关论文
共 42 条
[1]   IONIC-CONDUCTIVITY IN LI3N SINGLE-CRYSTALS [J].
ALPEN, UV ;
RABENAU, A ;
TALAT, GH .
APPLIED PHYSICS LETTERS, 1977, 30 (12) :621-623
[2]   Lithium ion conductivity in new perovskite oxides [AgyLi1-y]3xLa2/3-x□1/3-2xTiO3 (x=0.09 and 0 ≤ y ≤ 1) [J].
Bohnke, O ;
Bohnke, C ;
Sid'Ahmed, JO ;
Crosnier-Lopez, MP ;
Duroy, H ;
Le Berre, F ;
Fourquet, JL .
CHEMISTRY OF MATERIALS, 2001, 13 (05) :1593-1599
[3]   THE AC CONDUCTIVITY OF POLYCRYSTALLINE LISICON, LI2+2XZN1-XGEO4, AND A MODEL FOR INTERGRANULAR CONSTRICTION RESISTANCES [J].
BRUCE, PG ;
WEST, AR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1983, 130 (03) :662-669
[4]   The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes [J].
Cheng, Lei ;
Crumlin, Ethan J. ;
Chen, Wei ;
Qiao, Ruimin ;
Hou, Huaming ;
Lux, Simon Franz ;
Zorba, Vassilia ;
Russo, Richard ;
Kostecki, Robert ;
Liu, Zhi ;
Persson, Kristin ;
Yang, Wanli ;
Cabana, Jordi ;
Richardson, Thomas ;
Chen, Guoying ;
Doeff, Marca .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (34) :18294-18300
[5]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[6]   Structure and ionic conductivity in lithium garnets [J].
Cussen, Edmund J. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (25) :5167-5173
[7]   Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets [J].
Deviannapoorani, C. ;
Dhivya, L. ;
Ramakumar, S. ;
Murugan, Ramaswamy .
JOURNAL OF POWER SOURCES, 2013, 240 :18-25
[9]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[10]   Highly Li-Stuffed Garnet-Type Li7+xLa3Zr2-xYxO12 [J].
Hitz, Gregory T. ;
Wachsman, Eric D. ;
Thangadurai, Venkataraman .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (08) :A1248-A1255