Symmetry of ground states of p-Laplace equations via the moving plane method

被引:77
作者
Damascelli, L
Pacella, F
Ramaswamy, M
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Rome La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[3] TIFR Ctr, Bangalore 560012, Karnataka, India
关键词
D O I
10.1007/s002050050163
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we use the moving plane method to get the radial symmetry about a point x(0) is an element of R-N Of the positive ground state solutions of the equation -div (/Du/(p-2)Du) = f(u) in R-N, in the case 1 < p < 2. Sire assume f to be locally Lipschitz continuous in (0, +infinity) and nonincreasing near zero but we do not require any hypothesis on the critical set of the solution. To apply the moving plane method we first prove a weak comparison theorem for solutions of differential inequalities in unbounded domains.
引用
收藏
页码:291 / 308
页数:18
相关论文
共 18 条
  • [1] [Anonymous], P C CALC VAR APPL CO
  • [2] [Anonymous], REND MAT ACC LINCEI
  • [3] [Anonymous], APPL ANAL
  • [4] [Anonymous], 1994, APPL ANAL
  • [5] Berestycki H., 1991, Bol Soc Brasileira Mat, V22, P1, DOI DOI 10.1007/BF01244896
  • [6] Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results
    Damascelli, L
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (04): : 493 - 516
  • [7] DAMASCELLI L, 1998, ANN SCUOLA NORM SUP, V27, P689
  • [8] Evans L. C., 2018, Measure Theory and Fine Properties of Functions
  • [9] FRANCHI B, 1996, ADV MATH, V118, P117
  • [10] Gidas B., 1981, ADV MATH SUPPLEMEN A, V7, P369