A hierarchical Bayesian choice model with visibility

被引:3
|
作者
Osogami, Takayuki [1 ]
Katsuki, Takayuki [1 ]
机构
[1] IBM Res Tokyo, Tokyo, Japan
来源
2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2014年
关键词
choice; hierarchical; logit model; conjoint analysis; DECISION FIELD-THEORY;
D O I
10.1109/ICPR.2014.622
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We extend the standard choice model of multinomial logit model (MLM) into a hierarchical Bayesian model to simultaneously estimate the preferences of customers and the visibility of items from purchasing history. We say that an item has high visibility when customers well consider that item as a candidate before making a choice. We design two algorithms for estimating the parameters of the proposed choice model. One algorithm estimates the posterior distribution with the Gibbs sampling, and the other approximately performs the maximum a posteriori estimation. Our experimental results show that we can estimate the preferences of customers from their purchasing history without the prior knowledge of the choice set. The existing approaches to estimating the preferences of customers rely on the explicit knowledge of the choice set.
引用
收藏
页码:3618 / 3623
页数:6
相关论文
共 50 条
  • [1] A hierarchical Bayesian logit model for spatial multivariate choice data
    Oyama, Yuki
    Murakami, Daisuke
    Krueger, Rico
    JOURNAL OF CHOICE MODELLING, 2024, 52
  • [2] A Bayesian hierarchical model for discrete choice data in health care
    Antonio, Anna Liza M.
    Weiss, Robert E.
    Saigal, Christopher S.
    Dahan, Ely
    Crespi, Catherine M.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (12) : 3544 - 3559
  • [3] Hierarchical Bayesian modeling of intertemporal choice
    Chavez, Melisa E.
    Villalobos, Elena
    Baroja, Jose L.
    Bouzas, Arturo
    JUDGMENT AND DECISION MAKING, 2017, 12 (01): : 19 - 28
  • [4] A hierarchical Bayesian approach for examining heterogeneity in choice decisions
    Kim, Sunghoon
    DeSarbo, Wayne S.
    Fong, Duncan K. H.
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2018, 82 : 56 - 72
  • [5] DIAGNOSTICS IN BAYESIAN MODEL CHOICE
    PETTIT, LI
    STATISTICIAN, 1986, 35 (02): : 183 - 190
  • [6] A HIERARCHICAL MODEL OF HOUSING CHOICE
    BOEHM, TP
    URBAN STUDIES, 1982, 19 (01) : 17 - 31
  • [7] Bayesian Network Structure Inference with an Hierarchical Bayesian Model
    Werhli, Adriano Velasque
    ADVANCES IN ARTIFICIAL INTELLIGENCE - SBIA 2010, 2010, 6404 : 92 - 101
  • [8] Probabilistic Visibility Forecasting Using Bayesian Model Averaging
    Chmielecki, Richard M.
    Raftery, Adrian E.
    MONTHLY WEATHER REVIEW, 2011, 139 (05) : 1626 - 1636
  • [9] A HIERARCHICAL BAYESIAN MODEL FOR FRAME REPRESENTATION
    Chaari, Lotfi
    Pesquet, Jean-Christophe
    Tourneret, Jean-Yves
    Ciuciu, Philippe
    Benazza-Benyahia, Amel
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 4086 - 4089
  • [10] A Bayesian Hierarchical Model for Ranking Aggregation
    Loftus, Stephen
    Campbell, Sydney
    2021 SYSTEMS AND INFORMATION ENGINEERING DESIGN SYMPOSIUM (IEEE SIEDS 2021), 2021, : 81 - 85