The on-line degree Ramsey number of cycles

被引:2
作者
Rolnick, David [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Ramsey theory; On-line-degree Ramsey number; Cycle;
D O I
10.1016/j.disc.2013.04.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On-line Ramsey theory studies a graph-building game between two players. The player called Builder builds edges one at a time, and the player called Painter paints each new edge red or blue after it is built. The graph constructed is the host graph. Builder wins the game if the host graph at some point contains a monochromatic copy of a given goal graph. In the S-k-game variant of the typical game, the host graph is constrained to have maximum degree no greater than k. The on-line degree Ramsey number (R) over circle (Delta)(G) of a graph G is the minimum k such that Builder wins an S-k-game in which G is the goal graph. In this paper, we complete the investigation begun by Butterfield et al. into the on-line degree Ramsey numbers of n-cycles. Namely, we show that (R) over circle (Delta)(C) = 4 for n >= 3. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2084 / 2093
页数:10
相关论文
共 50 条
  • [41] Threshold functions for asymmetric Ramsey properties involving cycles
    Kohayakawa, Y
    Kreuter, B
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1997, 11 (03) : 245 - 276
  • [42] A NOTE ON THE SIZE RAMSEY NUMBERS FOR MATCHINGS VERSUS CYCLES
    Baskoro, Edy Tri
    Vetrik, Tomas
    [J]. MATHEMATICA BOHEMICA, 2021, 146 (02): : 229 - 234
  • [43] Gallai-Ramsey Number for the Union of Stars
    Mao, Ya Ping
    Wang, Zhao
    Magnant, Colton
    Schiermeyer, Ingo
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (08) : 1317 - 1332
  • [44] On the cycle-path bipartite Ramsey number
    Joubert, Ernst J.
    Henning, Michael A.
    [J]. DISCRETE MATHEMATICS, 2024, 347 (02)
  • [45] An upper bound for the restricted online Ramsey number
    Gonzalez, David
    He, Xiaoyu
    Zheng, Hanzhi
    [J]. DISCRETE MATHEMATICS, 2019, 342 (09) : 2564 - 2569
  • [46] Stability of the path-path Ramsey number
    Gyarfas, Andras
    Sarkozy, Gabor N.
    Szemeredi, Endre
    [J]. DISCRETE MATHEMATICS, 2009, 309 (13) : 4590 - 4595
  • [47] The Ramsey number for two graphs of order 5
    Bataineh, Mohammad S.
    Vetrik, Tomas
    Jaradat, Mohammed M. M.
    Rabaiah, Ayat M. M.
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2018, 21 (7-8) : 1523 - 1528
  • [48] On the Ramsey number of sparse 3-graphs
    Nagle, Brendan
    Olsen, Sayaka
    Roedl, Vojtech
    Schacht, Mathias
    [J]. GRAPHS AND COMBINATORICS, 2008, 24 (03) : 205 - 228
  • [49] The size-Ramsey number of short subdivisions
    Draganic, Nemanja
    Krivelevich, Michael
    Nenadov, Rajko
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2021, 59 (01) : 68 - 78
  • [50] A theorem on cycle-wheel Ramsey number
    Chen, Yaojun
    Cheng, T. C. Edwin
    Ng, C. T.
    Zhang, Yunqing
    [J]. DISCRETE MATHEMATICS, 2012, 312 (05) : 1059 - 1061