Role of internal motions and molecular geometry on the NMR relaxation of hydrocarbons

被引:29
|
作者
Singer, P. M. [1 ]
Asthagiri, D. [1 ]
Chen, Z. [1 ]
Parambathu, A. Valiya [1 ]
Hirasaki, G. J. [1 ]
Chapman, W. G. [1 ]
机构
[1] Rice Univ, Dept Chem & Biomol Engn, 6100 Main St, Houston, TX 77005 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2018年 / 148卷 / 16期
关键词
NUCLEAR-MAGNETIC-RESONANCE; SPIN-LATTICE-RELAXATION; NEMATIC LIQUID-CRYSTAL; MODEL-FREE APPROACH; DYNAMICS SIMULATIONS; SPECTRAL DENSITIES; TRANSLATIONAL DIFFUSION; ROTATIONAL-DIFFUSION; POLYMER DYNAMICS; CROSS-RELAXATION;
D O I
10.1063/1.5023240
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The role of internal motions and molecular geometry on H-1 NMR relaxation rates in liquid-state hydrocarbons is investigated using MD (molecular dynamics) simulations of the autocorrelation functions for intramolecular and intermolecular H-1-H-1 dipole-dipole interactions. The effects of molecular geometry and internal motions on the functional form of the autocorrelation functions are studied by comparing symmetric molecules such as neopentane and benzene to corresponding straight-chain alkanes n-pentane and n-hexane, respectively. Comparison of rigid versus flexible molecules shows that internal motions cause the intramolecular and intermolecular correlation-times to get significantly shorter, and the corresponding relaxation rates to get significantly smaller, especially for longer-chain n-alkanes. Site-by-site simulations of H-1's across the chains indicate significant variations in correlation times and relaxation rates across the molecule, and comparison with measurements reveals insights into cross-relaxation effects. Furthermore, the simulations reveal new insights into the relative strength of intramolecular versus intermolecular relaxation as a function of internal motions, as a function of molecular geometry, and on a site-by-site basis across the chain. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条