Bearing Feature Extraction and Fault Diagnosis Algorithm Based on Convolutional Neural Networks

被引:3
作者
Sun, Yi [1 ]
Gao, Hongli [1 ]
Song, Hongliang [1 ]
Hong, Xin [1 ]
Liu, Qi [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Sichuan, Peoples R China
来源
2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018) | 2018年
基金
中国国家自然科学基金;
关键词
Fault identification; Feature extraction; Raw data; Convolutional Neural Networks;
D O I
10.1109/PHM-Chongqing.2018.00139
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The first step of the traditional fault diagnosis method is to process the signal and then put the signal into the classifier for recognition. The feature extraction process depends on the experimenter's experience, and the recognition rate of the shallow diagnostic model does not achieve satisfactory results. The traditional diagnosis algorithms are based on a single object, so that their versatility can not be guaranteed, and they fail to meet the requirements of fault diagnosis in the big data era. In view of this problem, this paper presents an intelligent diagnosis algorithm based on convolution neural network, which can automatically complete the feature extraction and fault identification of the signal. The validity of the method is validated by using bearing data, and tests were performed using different sample sizes to analyze their impact on the diagnostic ability of CNN. The test results show that the proposed method has an accuracy rate of 99.82% for bearing fault diagnosis, which achieves the highest recognition rate and can meet the timeliness of fault diagnosis.
引用
收藏
页码:780 / 784
页数:5
相关论文
共 50 条
  • [31] Fault Diagnosis Feature Extraction of Marine Rolling Bearing Based on MEMD and Pe
    Cui, Jichao
    Ma, Lijie
    JOURNAL OF COASTAL RESEARCH, 2019, : 342 - 346
  • [32] Machine fault diagnosis using a cluster-based wavelet feature extraction and probabilistic neural networks
    Yu, Gang
    Li, Changning
    Kamarthi, Sagar
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2009, 42 (1-2) : 145 - 151
  • [33] Machine fault diagnosis using a cluster-based wavelet feature extraction and probabilistic neural networks
    Gang Yu
    Changning Li
    Sagar Kamarthi
    The International Journal of Advanced Manufacturing Technology, 2009, 42 : 145 - 151
  • [34] Enhanced Feature Extraction Network Based on Acoustic Signal Feature Learning for Bearing Fault Diagnosis
    Luo, Yuanqing
    Lu, Wenxia
    Kang, Shuang
    Tian, Xueyong
    Kang, Xiaoqi
    Sun, Feng
    SENSORS, 2023, 23 (21)
  • [35] Online Fault Diagnosis Method Based on Transfer Convolutional Neural Networks
    Xu, Gaowei
    Liu, Min
    Jiang, Zhuofu
    Shen, Weiming
    Huang, Chenxi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (02) : 509 - 520
  • [36] Fault diagnosis of rolling bearing of wind turbines based on the Variational Mode Decomposition and Deep Convolutional Neural Networks
    Xu, Zifei
    Li, Chun
    Yang, Yang
    APPLIED SOFT COMPUTING, 2020, 95
  • [37] A Novel Local Binary Temporal Convolutional Neural Network for Bearing Fault Diagnosis
    Xue, Yihao
    Yang, Rui
    Chen, Xiaohan
    Tian, Zhongbei
    Wang, Zidong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [38] Feature extraction using convolutional neural networks for multi-atlas based image segmentation
    Yang, Xuesong
    Fan, Yong
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [39] Filter Level Pruning Based on Similar Feature Extraction for Convolutional Neural Networks
    Li, Lianqiang
    Xu, Yuhui
    Zhu, Jie
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (04) : 1203 - 1206
  • [40] Prediction Consistency Guided Convolutional Neural Networks for Cross-Domain Bearing Fault Diagnosis
    Wu, Songsong
    Jing, Xiao-Yuan
    Zhang, Qinghua
    Wu, Fei
    Zhao, Haifeng
    Dong, Yuning
    IEEE ACCESS, 2020, 8 : 120089 - 120103