Perceptual Metric Guided Deep Attention Network for Single Image Super-Resolution

被引:3
|
作者
Sun, Yubao [1 ]
Shi, Yuyang [1 ]
Yang, Ying [1 ]
Zhou, Wangping [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Jiangsu Key Lab Big Data Anal Technol, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
super-resolution; generator network; residual attention; perceptual metric;
D O I
10.3390/electronics9071145
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning has been widely applied to image super-resolution (SR) tasks and has achieved superior performance over traditional methods due to its excellent feature learning capabilities. However, most of these deep learning-based methods require training image sets to pre-train SR network parameters. In this paper, we propose a new single image SR network without the need of any pre-training. The proposed network is optimized to achieve the SR reconstruction only from a low resolution observation rather than training image sets, and it focuses on improving the visual quality of reconstructed images. Specifically, we designed an attention-based decoder-encoder network for predicting the SR reconstruction, in which a residual spatial attention (RSA) unit is deployed in each layer of decoder to capture key information. Moreover, we adopt the perceptual metric consisting of L1 metric and multi-scale structural similarity (MSSSIM) metric to learn the network parameters. Different than the conventional MSE (mean squared error) metric, the perceptual metric coincides well with perceptual characteristics of the human visual system. Under the guidance of the perceptual metric, the RSA units are capable of predicting the visually sensitive areas at different scales. The proposed network can thus pay more attention to these areas for preserving visual informative structures at multiple scales. The experimental results on the Set5 and Set14 image set demonstrate that the combination of Perceptual metric and RSA units can significantly improve the reconstruction quality. In terms of PSNR and structural similarity (SSIM) values, the proposed method achieves better reconstruction results than the related works, and it is even comparable to some pre-trained networks.
引用
收藏
页码:1 / 16
页数:17
相关论文
共 50 条
  • [41] LOW REDUNDANT ATTENTION NETWORK FOR EFFICIENT IMAGE SUPER-RESOLUTION
    Liu, Yican
    Li, Jiacheng
    Zeng, Delu
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 2950 - 2954
  • [42] Image super-resolution based on adaptive cascading attention network
    Zhou, Dengwen
    Chen, Yiming
    Li, Wenbin
    Li, Jinxin
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 186
  • [43] Lightweight adaptive enhanced attention network for image super-resolution
    Wang, Li
    Xu, Lizhong
    Shi, Jianqiang
    Shen, Jie
    Huang, Fengcheng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (05) : 6513 - 6537
  • [44] Lightweight adaptive enhanced attention network for image super-resolution
    Li Wang
    Lizhong Xu
    Jianqiang Shi
    Jie Shen
    Fengcheng Huang
    Multimedia Tools and Applications, 2022, 81 : 6513 - 6537
  • [45] Hyperspectral image super-resolution based on attention ConvBiLSTM network
    Lu, Xiaochen
    Liu, Xiaohui
    Zhang, Lei
    Jia, Fengde
    Yang, Yunlong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (13) : 5059 - 5074
  • [46] Cross-Dimensional Attention Fusion Network for Simulated Single Image Super-Resolution
    He, Jingbo
    He, Xiaohai
    Xiong, Shuhua
    Chen, Honggang
    IEEE TRANSACTIONS ON BROADCASTING, 2024, 70 (03) : 909 - 923
  • [47] Feedback Pyramid Attention Networks for Single Image Super-Resolution
    Wu, Huapeng
    Gui, Jie
    Zhang, Jun
    Kwok, James T.
    Wei, Zhihui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 4881 - 4892
  • [48] Gradient residual attention network for infrared image super-resolution
    Yuan, Xilin
    Zhang, Baohui
    Zhou, Jinjie
    Lian, Cheng
    Zhang, Qian
    Yue, Jiang
    OPTICS AND LASERS IN ENGINEERING, 2024, 175
  • [49] Cross Parallax Attention Network for Stereo Image Super-Resolution
    Chen, Canqiang
    Qing, Chunmei
    Xu, Xiangmin
    Dickinson, Patrick
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 202 - 216
  • [50] SGSR: A SALIENCY-GUIDED IMAGE SUPER-RESOLUTION NETWORK
    Kim, Dayeon
    Kim, Munchurl
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 980 - 984