Perceptual Metric Guided Deep Attention Network for Single Image Super-Resolution

被引:3
|
作者
Sun, Yubao [1 ]
Shi, Yuyang [1 ]
Yang, Ying [1 ]
Zhou, Wangping [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Jiangsu Key Lab Big Data Anal Technol, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
super-resolution; generator network; residual attention; perceptual metric;
D O I
10.3390/electronics9071145
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning has been widely applied to image super-resolution (SR) tasks and has achieved superior performance over traditional methods due to its excellent feature learning capabilities. However, most of these deep learning-based methods require training image sets to pre-train SR network parameters. In this paper, we propose a new single image SR network without the need of any pre-training. The proposed network is optimized to achieve the SR reconstruction only from a low resolution observation rather than training image sets, and it focuses on improving the visual quality of reconstructed images. Specifically, we designed an attention-based decoder-encoder network for predicting the SR reconstruction, in which a residual spatial attention (RSA) unit is deployed in each layer of decoder to capture key information. Moreover, we adopt the perceptual metric consisting of L1 metric and multi-scale structural similarity (MSSSIM) metric to learn the network parameters. Different than the conventional MSE (mean squared error) metric, the perceptual metric coincides well with perceptual characteristics of the human visual system. Under the guidance of the perceptual metric, the RSA units are capable of predicting the visually sensitive areas at different scales. The proposed network can thus pay more attention to these areas for preserving visual informative structures at multiple scales. The experimental results on the Set5 and Set14 image set demonstrate that the combination of Perceptual metric and RSA units can significantly improve the reconstruction quality. In terms of PSNR and structural similarity (SSIM) values, the proposed method achieves better reconstruction results than the related works, and it is even comparable to some pre-trained networks.
引用
收藏
页码:1 / 16
页数:17
相关论文
共 50 条
  • [1] Region Attention Network For Single Image Super-resolution
    Du, Xiaobiao
    Liu, Chongjin
    Yang, Xiaoling
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [2] Lightweight Attention-Guided Network for Image Super-Resolution
    Ding, Zixuan
    Juan, Zhang
    Xiang, Li
    Wang, Xinyu
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (14)
  • [3] Content-guided deep residual network for single image super-resolution
    Chen, Liangliang
    Kou, Qiqi
    Cheng, Deqiang
    Yao, Jie
    OPTIK, 2020, 202
  • [4] Deep Super-Resolution Network for Single Image Super-Resolution with Realistic Degradations
    Umer, Rao Muhammad
    Foresti, Gian Luca
    Micheloni, Christian
    ICDSC 2019: 13TH INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS, 2019,
  • [5] Deep Residual Attention Network for Spectral Image Super-Resolution
    Shi, Zhan
    Chen, Chang
    Xiong, Zhiwei
    Liu, Dong
    Zha, Zheng-Jun
    Wu, Feng
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 214 - 229
  • [6] Deep Residual Network for Single Image Super-Resolution
    Wang, Haimin
    Liao, Kai
    Yan, Bin
    Ye, Run
    ICCCV 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON CONTROL AND COMPUTER VISION, 2019, : 66 - 70
  • [7] Single image super-resolution via a ternary attention network
    Lianping Yang
    Jian Tang
    Ben Niu
    Haoyue Fu
    Hegui Zhu
    Wuming Jiang
    Xin Wang
    Applied Intelligence, 2023, 53 : 13067 - 13081
  • [8] SRGAT: Single Image Super-Resolution With Graph Attention Network
    Yan, Yanyang
    Ren, Wenqi
    Hu, Xiaobin
    Li, Kun
    Shen, Haifeng
    Cao, Xiaochun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4905 - 4918
  • [9] CANS: Combined Attention Network for Single Image Super-Resolution
    Muhammad, Wazir
    Aramvith, Supavadee
    Onoye, Takao
    IEEE ACCESS, 2024, 12 : 167498 - 167517
  • [10] Nested Dense Attention Network for Single Image Super-Resolution
    Qiu, Cheng
    Yao, Yirong
    Du, Yuntao
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR '21), 2021, : 250 - 258