Structural Transitions in Nanoparticle Assemblies Governed by Competing Nanoscale Forces

被引:101
作者
Choueiri, Rachelle M. [1 ]
Klinkova, Anna [1 ]
Therien-Aubin, Heloise [2 ]
Rubinstein, Michael [3 ]
Kumacheva, Eugenia [1 ,2 ,4 ]
机构
[1] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada
[2] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada
[3] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
[4] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON M5S 3G9, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会; 美国国家卫生研究院;
关键词
GOLD NANORODS; INTERPARTICLE; GROWTH; CHAINS;
D O I
10.1021/ja404341r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Assembly of nanoscale materials from nanoparticle (NP) building blocks relies on our understanding of multiple nanoscale forces acting between NPs. These forces may compete with each other and yield distinct stimuli-responsive self-assembled nanostructures. Here, we report structural transitions between linear chains and globular assemblies of charged, polymer-stabilized gold NPs, which are governed by the competition of repulsive electrostatic forces and attractive poor solvency/hydrophobic forces. We propose a simple quantitative model and show that these transitions can be controlled by the quality of solvent, addition of a salt, and variation of the molecular weight of the polymer ligands.
引用
收藏
页码:10262 / 10265
页数:4
相关论文
共 35 条
[1]  
Brandrup J., 1999, Polymer Handbook, VII
[2]   Self-Assembled Nanometer-Scale Magnetic Networks on Surfaces: Fundamental Interactions and Functional Properties [J].
Carbone, Carlo ;
Gardonio, Sandra ;
Moras, Paolo ;
Lounis, Samir ;
Heide, Marcus ;
Bihlmayer, Gustav ;
Atodiresei, Nicolae ;
Dederichs, Peter Heinz ;
Bluegel, Stefan ;
Vlaic, Sergio ;
Lehnert, Anne ;
Ouazi, Safia ;
Rusponi, Stefano ;
Brune, Harald ;
Honolka, Jan ;
Enders, Axel ;
Kern, Klaus ;
Stepanow, Sebastian ;
Krull, Cornelius ;
Balashov, Timofey ;
Mugarza, Aitor ;
Gambardella, Pietro .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (07) :1212-1228
[3]   Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors [J].
Caswell, KK ;
Wilson, JN ;
Bunz, UHF ;
Murphy, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (46) :13914-13915
[4]   Evolution of Self-Assembled Structures of Polymer-Terminated Gold Nanorods in Selective Solvents [J].
Fava, Daniele ;
Nie, Zhihong ;
Winnik, Mitchell A. ;
Kumacheva, Eugenia .
ADVANCED MATERIALS, 2008, 20 (22) :4318-4322
[5]   End-to-End Assembly of Shape-Controlled Nanocrystals via a Nanowelding Approach Mediated by Gold Domains [J].
Figuerola, Albert ;
Franchini, Isabella R. ;
Fiore, Angela ;
Mastria, Rosanna ;
Falqui, Andrea ;
Bertoni, Giovanni ;
Bals, Sara ;
Van Tendeloo, Gustaaf ;
Kudera, Stefan ;
Cingolani, Roberto ;
Manna, Liberato .
ADVANCED MATERIALS, 2009, 21 (05) :550-+
[6]  
Franks F., 1973, WATER COMPREHENSIVE, V2
[7]   Design and Application of Inorganic Nanoparticle Superstructures: Current Status and Future challenges [J].
Gao, Yan ;
Tang, Zhiyong .
SMALL, 2011, 7 (15) :2133-2146
[8]  
Israelachvili JN, 2011, INTERMOLECULAR AND SURFACE FORCES, 3RD EDITION, P1
[9]   Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice [J].
Kalsin, AM ;
Fialkowski, M ;
Paszewski, M ;
Smoukov, SK ;
Bishop, KJM ;
Grzybowski, BA .
SCIENCE, 2006, 312 (5772) :420-424
[10]   DIELECTRIC-RELAXATION STUDIES OF AQUEOUS N,N-DIMETHYLFORMAMIDE USING A PICOSECOND TIME DOMAIN TECHNIQUE [J].
KUMBHARKHANE, AC ;
PURANIK, SM ;
MEHROTRA, SC .
JOURNAL OF SOLUTION CHEMISTRY, 1993, 22 (03) :219-229