FINITE TIME BLOW UP FOR THE COMPRESSIBLE FLUIDS AND FOR THE ENERGY SUPERCRITICAL DEFOCUSING NONLINEAR SCHRODINGER EQUATION

被引:0
作者
Perelman, Galina [1 ]
机构
[1] Univ Paris Est Creteil, LAMA UMR 8050, 61 Ave Gen Gaulle, F-94010 Creteil, France
关键词
GLOBAL WELL-POSEDNESS; CAUCHY-PROBLEM; WAVE-EQUATION; SCATTERING; REGULARITY; IMPLOSION;
D O I
10.24033/ast.1192
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:403 / 432
页数:30
相关论文
共 54 条
[41]   On blow up for the energy super critical defocusing nonlinear Schrodinger equations [J].
Merle, Frank ;
Raphael, Pierre ;
Rodnianski, Igor ;
Szeftel, Jeremie .
INVENTIONES MATHEMATICAE, 2022, 227 (01) :247-413
[42]   Type II blow up for the energy supercritical NLS [J].
Merle, Frank ;
Raphael, Pierre ;
Rodnianski, Igor .
CAMBRIDGE JOURNAL OF MATHEMATICS, 2015, 3 (04) :439-617
[43]  
NASH J., 1962, B SOC MATH FR, V90, P487
[44]   Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations [J].
Rozanova, Olga .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (07) :1762-1774
[45]  
Ryckman E, 2007, AM J MATH, V129, P1
[46]  
Sedov LI, 1959, SIMILARITY DIMENSION
[47]   ON THE UNIQUENESS OF COMPRESSIBLE FLUID MOTIONS [J].
SERRIN, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1959, 3 (03) :271-288
[48]   FORMATION OF SINGULARITIES IN 3-DIMENSIONAL COMPRESSIBLE FLUIDS [J].
SIDERIS, TC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 101 (04) :475-485
[49]  
Tao T., 2005, NY J MATH, V11, P57
[50]   Global regularity for a logarithmically supercritical defocusing nonlinear wave equation for spherically symmetric data [J].
Tao, Terence .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2007, 4 (02) :259-265