FINITE TIME BLOW UP FOR THE COMPRESSIBLE FLUIDS AND FOR THE ENERGY SUPERCRITICAL DEFOCUSING NONLINEAR SCHRODINGER EQUATION

被引:0
作者
Perelman, Galina [1 ]
机构
[1] Univ Paris Est Creteil, LAMA UMR 8050, 61 Ave Gen Gaulle, F-94010 Creteil, France
关键词
GLOBAL WELL-POSEDNESS; CAUCHY-PROBLEM; WAVE-EQUATION; SCATTERING; REGULARITY; IMPLOSION;
D O I
10.24033/ast.1192
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:403 / 432
页数:30
相关论文
共 54 条
[1]   Loss of regularity for supercritical nonlinear Schrodinger equations [J].
Alazard, Thomas ;
Carles, Remi .
MATHEMATISCHE ANNALEN, 2009, 343 (02) :397-420
[2]  
Alinhac BS, 2001, AM J MATH, V123, P1071
[3]   Blowup of small data solutions for a quasilinear wave equation in two space dimensions [J].
Alinhac, S .
ANNALS OF MATHEMATICS, 1999, 149 (01) :97-127
[4]  
[Anonymous], 2010, FUNDAMENTAL PRINCIPL
[5]   From the Gross-Pitaevskii equation to the Euler Korteweg system, existence of global strong solutions with small irrotational initial data [J].
Audiard, Corentin ;
Haspot, Boris .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (03) :721-760
[6]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[7]  
Buckmaster T, 2021, ARXIV
[8]  
Buckmaster T, 2019, Arxiv, DOI arXiv:1907.03784
[9]  
Buckmaster T, 2020, Arxiv, DOI arXiv:2006.14789
[10]  
Buckmaster T, 2020, Arxiv, DOI arXiv:1912.04429