pwOmics: an R package for pathway-based integration of time-series omics data using public database knowledge

被引:17
|
作者
Wachter, Astrid [1 ]
Beissbarth, Tim [1 ]
机构
[1] Univ Gottingen, Dept Med Stat, D-37073 Gottingen, Germany
关键词
INFORMATION; SOFTWARE;
D O I
10.1093/bioinformatics/btv323
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Characterization of biological processes is progressively enabled with the increased generation of omics data on different signaling levels. Here we present a straightforward approach for the integrative analysis of data from different high-throughput technologies based on pathway and interaction models from public databases. pwOmics performs pathway-based level-specific data comparison of coupled human proteomic and genomic/transcriptomic datasets based on their log fold changes. Separate downstream and upstream analyses results on the functional levels of pathways, transcription factors and genes/transcripts are performed in the cross-platform consensus analysis. These provide a basis for the combined interpretation of regulatory effects over time. Via network reconstruction and inference methods (Steiner tree, dynamic Bayesian network inference) consensus graphical networks can be generated for further analyses and visualization.
引用
收藏
页码:3072 / 3074
页数:3
相关论文
共 50 条
  • [1] Pathview: an R/Bioconductor package for pathway-based data integration and visualization
    Luo, Weijun
    Brouwer, Cory
    BIOINFORMATICS, 2013, 29 (14) : 1830 - 1831
  • [2] Lilikoi: an R package for personalized pathway-based classification modeling using metabolomics data
    Al-Akwaa, Fadhl M.
    Yunits, Breck
    Huang, Sijia
    Alhajaji, Hassam
    Garmire, Lana X.
    GIGASCIENCE, 2018, 7 (12):
  • [3] Time-Series Clustering in R Using the dtwclust Package
    Sarda-Espinosa, Alexis
    R JOURNAL, 2019, 11 (01): : 22 - 43
  • [4] PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration
    Wieder, Cecilia
    Cooke, Juliette
    Frainay, Clement
    Poupin, Nathalie
    Bowler, Russell
    Jourdan, Fabien
    Kechris, Katerina J.
    Lai, Rachel P. J.
    Ebbels, Timothy
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (03)
  • [5] SurvivalPath:A R package for conducting personalized survival path mapping based on time-series survival data
    Shen, Lujun
    Mo, Jinqing
    Yang, Changsheng
    Jiang, Yiquan
    Ke, Liangru
    Hou, Dan
    Yan, Jingdong
    Zhang, Tao
    Fan, Weijun
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (01)
  • [6] TSIS: an R package to infer alternative splicing isoform switches for time-series data
    Guo, Wenbin
    Calixto, Cristiane P. G.
    Brown, John W. S.
    Zhang, Runxuan
    BIOINFORMATICS, 2017, 33 (20) : 3308 - 3310
  • [7] Robust pathway-based multi-omics data integration using directed random walks for survival prediction in multiple cancer studies
    Kim, So Yeon
    Jeong, Hyun-Hwan
    Kim, Jaesik
    Moon, Jeong-Hyeon
    Sohn, Kyung-Ah
    BIOLOGY DIRECT, 2019, 14 (1)
  • [8] Robust pathway-based multi-omics data integration using directed random walks for survival prediction in multiple cancer studies
    So Yeon Kim
    Hyun-Hwan Jeong
    Jaesik Kim
    Jeong-Hyeon Moon
    Kyung-Ah Sohn
    Biology Direct, 14
  • [9] PathwayPCA: an R/Bioconductor Package for Pathway Based Integrative Analysis of Multi-Omics Data
    Odom, Gabriel J.
    Ban, Yuguang
    Colaprico, Antonio
    Liu, Lizhong
    Silva, Tiago Chedraoui
    Sun, Xiaodian
    Pico, Alexander R.
    Zhang, Bing
    Wang, Lily
    Chen, Xi
    PROTEOMICS, 2020, 20 (21-22)
  • [10] Integration of time-series meta-omics data reveals how microbial ecosystems respond to disturbance
    Herold, Malte
    Arbas, Susana Martinez
    Narayanasamy, Shaman
    Sheik, Abdul R.
    Kleine-Borgmann, Luise A. K.
    Lebrun, Laura A.
    Kunath, Benoit J.
    Roume, Hugo
    Bessarab, Irina
    Williams, Rohan B. H.
    Gillece, John D.
    Schupp, James M.
    Keim, Paul S.
    Jaeger, Christian
    Hoopmann, Michael R.
    Moritz, Robert L.
    Ye, Yuzhen
    Li, Sujun
    Tang, Haixu
    Heintz-Buschart, Anna
    May, Patrick
    Muller, Emilie E. L.
    Laczny, Cedric C.
    Wilmes, Paul
    NATURE COMMUNICATIONS, 2020, 11 (01)