Hidden Markov Model on a unit hypersphere space for gesture trajectory recognition

被引:28
作者
Beh, Jounghoon [1 ]
Han, David K.
Durasiwami, Ramani [1 ]
Ko, Hanseok [1 ,2 ]
机构
[1] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
[2] Korea Univ, Sch Elect Engn, Seoul, South Korea
关键词
Directional statistics; Gesture recognition; Hidden Markov model; Von Mises-Fisher distribution; MOTION;
D O I
10.1016/j.patrec.2013.10.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a Mixture of von Mises-Fisher (MvMF) Probability Density Function (PDF) is incorporated into a Hidden Markov Model (HMM) in order to model spatio-temporal data in a unit-hypersphere space. The parameter estimation formulae for MvMF-HMM are derived in a closed form. As an application for the proposed MvMF-HMM, hands gesture trajectory recognition task is considered. Modeling gesture trajectory on a unit-hypersphere inherently removes bias from a subject's arm length or distance between a subject and camera. In experiments with public datasets, InteractPlay and UCF Kinect, the proposed MvMF-HMM showed superior recognition performance compared to current state-of-the-art techniques. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:144 / 153
页数:10
相关论文
共 35 条
[1]   A Unified Framework for Gesture Recognition and Spatiotemporal Gesture Segmentation [J].
Alon, Jonathan ;
Athitsos, Vassilis ;
Yuan, Quan ;
Sclaroff, Stan .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (09) :1685-1699
[2]  
[Anonymous], 2006, Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Volume 2, Washington, DC, USA
[3]  
[Anonymous], 2001, PROC 18 INT C MACH L
[4]  
Araki S, 2009, LECT NOTES COMPUT SC, V5441, P742, DOI 10.1007/978-3-642-00599-2_93
[5]  
Baltieri D, 2012, LECT NOTES COMPUT SC, V7576, P270, DOI 10.1007/978-3-642-33715-4_20
[6]  
Banerjee A, 2005, J MACH LEARN RES, V6, P1345
[7]  
Baum L. E., 1972, Inequalities, V3, P1
[8]   Mixtures of von Mises Distributions for People Trajectory Shape Analysis [J].
Calderara, Simone ;
Prati, Andrea ;
Cucchiara, Rita .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2011, 21 (04) :457-471
[9]   Feature fusion for 3D hand gesture recognition by learning a shared hidden space [J].
Cheng, Jun ;
Xie, Can ;
Bian, Wei ;
Tao, Dacheng .
PATTERN RECOGNITION LETTERS, 2012, 33 (04) :476-484
[10]   Concept decompositions for large sparse text data using clustering [J].
Dhillon, IS ;
Modha, DS .
MACHINE LEARNING, 2001, 42 (1-2) :143-175