Angular Dependences of Silicon Sputtering by Gallium Focused Ion Beam

被引:7
作者
Bachurin, V. I. [1 ]
Zhuravlev, I. V. [1 ]
Pukhov, D. E. [1 ]
Rudy, A. S. [1 ]
Simakin, S. G. [1 ]
Smirnova, M. A. [1 ]
Churilov, A. B. [1 ]
机构
[1] Russian Acad Sci, Valiev Inst Phys & Technol, Yaroslavl Branch, Yaroslavl 150007, Russia
来源
JOURNAL OF SURFACE INVESTIGATION | 2020年 / 14卷 / 04期
关键词
sputtering; surface layers; focused ion beam; secondary ion mass spectrometry; scanning Auger electron spectroscopy; IMPLANTATION; SIMULATION; YIELD; ANGLE; GA; SI;
D O I
10.1134/S1027451020040229
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Angular dependences of the surface layer composition and the sputtering yield of silicon upon irradiation of the surface with a focused beam of gallium ions with an energy of 30 keV are obtained. The surface composition is analyzed by scanning Auger electron spectroscopy (SAES) and secondary ion mass spectrometry (SIMS). The sputtering yields are determined by measuring the volume of sputtering craters and irradiation doses. It is found that the content of gallium in the surface layer is about 30 at % with incidence angles close to the normal. With incidence angles greater than 30 degrees, the concentration of gallium decreases quite sharply. The angular dependence of the sputtering yield of silicon does not correlate with the content of gallium in the surface layer and is rather well described by the cascade sputtering mechanism proposed by P. Sigmund.
引用
收藏
页码:784 / 790
页数:7
相关论文
共 27 条
[1]   Depth Profiling of Layered Si-O-Al Thin Films with Secondary Ion Mass Spectrometry and Rutherford Backscattering Spectrometry [J].
Bachurin, V., I ;
Melesov, N. S. ;
Mironenko, A. A. ;
Parshin, E. O. ;
Rudy, A. S. ;
Simakin, S. G. ;
Churilov, A. B. .
JOURNAL OF SURFACE INVESTIGATION, 2019, 13 (02) :300-305
[2]   Angular dependences of surface composition, sputtering and ripple formation on silicon under N2+ ion bombardment [J].
Bachurin, VI ;
Lepshin, PA ;
Smirnov, VK .
VACUUM, 2000, 56 (04) :241-245
[3]  
Behrisch R., 1983, SPUTTERING PARTICLE
[4]   Simulation of material sputtering with a focused ion beam [J].
Borgardt, N. I. ;
Volkov, R. L. ;
Rumyantsev, A. V. ;
Chaplygin, Yu. A. .
TECHNICAL PHYSICS LETTERS, 2015, 41 (06) :610-613
[5]   Sputtering of redeposited material in focused ion beam silicon processing [J].
Borgardt, Nikolay I. ;
Rumyantsev, Alexander V. ;
Volkov, Roman L. ;
Chaplygin, Yuri A. .
MATERIALS RESEARCH EXPRESS, 2018, 5 (02)
[6]   Prediction of surface topography due to finite pixel spacing in FIB milling of rectangular boxes and trenches [J].
Borgardt, Nikolay I. ;
Rumyantsev, Alexander V. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2016, 34 (06)
[7]   Comparison of technologies for nano device prototyping with a special focus on ion beams: A review [J].
Bruchhaus, L. ;
Mazarov, P. ;
Bischoff, L. ;
Gierak, J. ;
Wieck, A. D. ;
Hoevel, H. .
APPLIED PHYSICS REVIEWS, 2017, 4 (01)
[8]   ION SORPTION IN PRESENCE OF SPUTTERING [J].
CARTER, G ;
COLLIGON, JS ;
LECK, JH .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1962, 79 (508) :299-&
[9]   Nanoscale effects in focused ion beam processing [J].
Frey, L ;
Lehrer, C ;
Ryssel, H .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2003, 76 (07) :1017-1023
[10]   FOCUSED-ION-BEAM IMPLANTATION OF GA IN ELEMENTAL AND COMPOUND SEMICONDUCTORS [J].
GNASER, H ;
KALLMAYER, C ;
OECHSNER, H .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1995, 13 (01) :19-26