Moving Object Tracking Using an Adaptive Colour Filter

被引:0
|
作者
Su, Feng [1 ]
Fang, Gu [1 ]
机构
[1] Univ Western Sydney, Sch Comp Engn & Math, Penrith, NSW 2751, Australia
来源
2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS & VISION (ICARCV) | 2012年
关键词
moving object tracking; adaptive colour filter; colour tracking; mobile robot; IMAGE SEGMENTATION; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Moving object identification and tracking by computer vision plays an important role in surveillance using mobile robots. In this paper, a new method for moving object tracking using an adaptive colour filter is introduced. This method is capable of identifying the most salient colour feature in the moving object and using this colour feature to track the object. This method is also capable of adapting this selected colour feature when the surrounding condition is changed. Experimental results have shown that the proposed method can perform robustly in tracking a moving object using a robot mounted camera in a crowded environment.
引用
收藏
页码:1048 / 1052
页数:5
相关论文
共 50 条
  • [31] Chaotic particle filter for visual object tracking
    Firouznia, Marjan
    Faez, Karim
    Amindavar, Hamidreza
    Koupaei, Javad Alikhani
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 53 : 1 - 12
  • [32] The Tracking of a Moving Object by a Mobile Robot Following the Object's Sound
    Han, Jongho
    Han, Sunsin
    Lee, Jangmyung
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2013, 71 (01) : 31 - 42
  • [33] The Tracking of a Moving Object by a Mobile Robot Following the Object’s Sound
    Jongho Han
    Sunsin Han
    Jangmyung Lee
    Journal of Intelligent & Robotic Systems, 2013, 71 : 31 - 42
  • [34] An Adaptive Threshold Algorithm for Moving Object Segmentation
    Tian, Yumin
    Wang, Dan
    Lin, Risan
    Chen, Qichao
    COMPUTER VISION, CCCV 2015, PT I, 2015, 546 : 230 - 239
  • [35] LoG-DEM: Log Gabor Filter and Dominant Eigen Map Approaches for Moving Object Detection and Tracking
    Krishna, M. T. Gopala
    Ravishankar, M.
    Babu, Ramesh
    2012 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2012, : 568 - 573
  • [36] Colour Histogram Segmentation for Object Tracking in Remote Laboratory Environments
    Smith, Mark
    Maiti, Ananda
    Maxwell, Andrew D.
    Kist, Alexander A.
    CYBER-PHYSICAL SYSTEMS AND DIGITAL TWINS, 2020, 80 : 544 - 563
  • [37] Moving object tracking using an active fusion model with robustness against partial occlusions
    Lee, J
    Jeong, S
    Kim, G
    CISST '05: PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS, AND TECHNOLOGY: COMPUTER GRAPHICS, 2005, : 126 - 132
  • [38] Moving Object Tracking via One-Dimensional Optical Flow Using Queue
    Kinoshita, Koji
    Murakami, Kenji
    2008 10TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION: ICARV 2008, VOLS 1-4, 2008, : 2326 - 2331
  • [39] Correlation-Based Template Tracking Of Moving Object
    Tekwani, Hema
    Raj, Krishna
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2022, 13 (03) : 175 - 182
  • [40] An Improved Mean Shift Algorithm for Moving Object Tracking
    Li, Ning
    Zhang, Dan
    Gu, Xiaorong
    Huang, Li
    Liu, Wei
    Xu, Tao
    2015 IEEE 28TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2015, : 1425 - 1429