SIMULATION OPTIMIZATION: A TUTORIAL OVERVIEW AND RECENT DEVELOPMENTS IN GRADIENT-BASED METHODS

被引:0
|
作者
Chau, Marie [1 ]
Fu, Michael C. [2 ]
Qu, Huashuai [1 ]
Ryzhov, Ilya O. [2 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Univ Maryland, Robert H Smith Sch Business, College Pk, MD 20742 USA
关键词
STOCHASTIC-APPROXIMATION; SELECTION; PROBABILITY; ALLOCATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We provide a tutorial overview of simulation optimization methods, including statistical ranking & selection (R&S) methods such as indifference-zone procedures, optimal computing budget allocation (OCBA), and Bayesian value of information (VIP) approaches; random search methods; sample average approximation (SAA); response surface methodology (RSM); and stochastic approximation (SA). In this paper, we provide high-level descriptions of each of the approaches, as well as some comparisons of their characteristics and relative strengths; simple examples will be used to illustrate the different approaches in the talk. We then describe some recent research in two areas of simulation optimization: stochastic approximation and the use of direct stochastic gradients for simulation metamodels. We conclude with a brief discussion of available simulation optimization software.
引用
收藏
页码:21 / 35
页数:15
相关论文
共 50 条
  • [21] A skeletonization algorithm for gradient-based optimization
    Menten, Martin J.
    Paetzold, Johannes C.
    Zimmer, Veronika A.
    Shit, Suprosanna
    Ezhov, Ivan
    Holland, Robbie
    Probst, Monika
    Schnabel, Julia A.
    Rueckert, Daniel
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21337 - 21346
  • [22] Gradient-based optimization of spintronic devices
    Imai, Y.
    Liu, S.
    Akashi, N.
    Nakajima, K.
    APPLIED PHYSICS LETTERS, 2025, 126 (08)
  • [23] A gradient-based direct aperture optimization
    Yang, Jie
    Zhang, Pengcheng
    Zhang, Liyuan
    Gui, Zhiguo
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2018, 35 (03): : 358 - 367
  • [24] Trivializations for Gradient-Based Optimization on Manifolds
    Lezcano-Casado, Mario
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [25] Catalyst for Gradient-based Nonconvex Optimization
    Paquette, Courtney
    Lin, Hongzhou
    Drusvyatskiy, Dmitriy
    Mairal, Julien
    Harchaoui, Zaid
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [26] ON THE ADAPTIVITY OF STOCHASTIC GRADIENT-BASED OPTIMIZATION
    Lei, Lihua
    Jordan, Michael I.
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (02) : 1473 - 1500
  • [27] A Gradient-Based Optimization Algorithm for LASSO
    Kim, Jinseog
    Kim, Yuwon
    Kim, Yongdai
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (04) : 994 - 1009
  • [28] Gradient-Based Multiobjective Optimization with Uncertainties
    Peitz, Sebastian
    Dellnitz, Michael
    NEO 2016: RESULTS OF THE NUMERICAL AND EVOLUTIONARY OPTIMIZATION WORKSHOP NEO 2016 AND THE NEO CITIES 2016 WORKSHOP, 2018, 731 : 159 - 182
  • [29] AN ERROR ANALYSIS OF GRADIENT-BASED METHODS
    LEE, JH
    KIM, SD
    SIGNAL PROCESSING, 1994, 35 (02) : 157 - 162
  • [30] Gradient-Based Methods for Sparse Recovery
    Hager, William W.
    Phan, Dzung T.
    Zhang, Hongchao
    SIAM JOURNAL ON IMAGING SCIENCES, 2011, 4 (01): : 146 - 165