LAYER SOLUTIONS FOR A ONE-DIMENSIONAL NONLOCAL MODEL OF GINZBURG LANDAU TYPE

被引:6
作者
Chen, K. -S. [1 ]
Muratov, C. B. [2 ]
Yan, X. [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
基金
美国国家科学基金会;
关键词
Non-local Allen Cahn equation; layer solutions; De Giorgi conjecture; FRACTIONAL LAPLACIANS; NONLINEAR EQUATIONS; EXTENSION PROBLEM; 1-D SYMMETRY; DE-GIORGI; CONJECTURE; REGULARITY;
D O I
10.1051/mmnp/2017068
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study a nonlocal model of Ginzburg Landau type that gives rise to an equation involving a mixture of the Laplacian and half-Laplacian. Our focus is on one-dimensional transition layer profiles that connect the two distinct homogeneous phases. We first introduce a renormalized one-dimensional energy that is free from a logarithmic divergence due to the failure of the Gagliardo norm to be finite on smooth profiles that asymptote to different limits at infinity. We then prove existence, uniqueness, monotonicity and regularity of minimizers in a suitable class. Lastly, we consider the singular limit in which the coefficient in front of the Laplacian vanishes and prove convergence of the obtained minimizer to the solutions of the fractional Allen Cahn equation.
引用
收藏
页码:68 / 90
页数:23
相关论文
共 38 条
[1]   On a long-standing conjecture of E.!De Giorgi:: Symmetry in 3D for general nonlinearities and a local minimality property [J].
Alberti, G ;
Ambrosio, L ;
Cabré, X .
ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) :9-33
[2]  
Ambrosio L., 2000, AM MATH SOC, V13, P725
[3]  
[Anonymous], 2014, CLASSICAL FOURIER AN, DOI DOI 10.1007/978-1-4939-1194-3
[4]  
Barlow MT, 2000, COMMUN PUR APPL MATH, V53, P1007, DOI 10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.0.CO
[5]  
2-U
[6]  
Bucur C, 2016, LECT NOTES UNIONE MA, V20, P1, DOI 10.1007/978-3-319-28739-3
[7]   Layer solutions in a half-space for boundary reactions [J].
Cabré, X ;
Solà-Morales, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (12) :1678-1732
[8]   An extension problem for sums of fractional Laplacians and 1-D symmetry of phase transitions [J].
Cabre, Xavier ;
Serra, Joaquim .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 137 :246-265
[9]   NONLINEAR EQUATIONS FOR FRACTIONAL LAPLACIANS II: EXISTENCE, UNIQUENESS, AND QUALITATIVE PROPERTIES OF SOLUTIONS [J].
Cabre, Xavier ;
Sire, Yannick .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (02) :911-941
[10]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53