Facilitating the Analysis of Immunological Data with Visual Analytic Techniques

被引:6
|
作者
Shih, David C. [1 ,2 ]
Ho, Kevin C. [1 ]
Melnick, Kyle M. [3 ]
Rensink, Ronald A. [2 ,3 ]
Kollmann, Tobias R. [1 ]
Fortuno, Edgardo S. [1 ]
机构
[1] Univ British Columbia, Child & Family Res Inst, Div Infect & Immunol Dis, Dept Paediat, Vancouver, BC V5Z 1M9, Canada
[2] Univ British Columbia, Dept Comp Sci, Vancouver, BC V5Z 1M9, Canada
[3] Univ British Columbia, Dept Psychol, Vancouver, BC V5Z 1M9, Canada
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2011年 / 47期
关键词
Immunology; Issue; 47; Visual analytics; flow cytometry; Luminex; Tableau; cytokine; innate immunity; single nucleotide polymorphism;
D O I
10.3791/2397
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Visual analytics (VA) has emerged as a new way to analyze large dataset through interactive visual display. We demonstrated the utility and the flexibility of a VA approach in the analysis of biological datasets. Examples of these datasets in immunology include flow cytometry, Luminex data, and genotyping (e.g., single nucleotide polymorphism) data. Contrary to the traditional information visualization approach, VA restores the analysis power in the hands of analyst by allowing the analyst to engage in real-time data exploration process. We selected the VA software called Tableau after evaluating several VA tools. Two types of analysis tasks analysis within and between datasets were demonstrated in the video presentation using an approach called paired analysis. Paired analysis, as defined in VA, is an analysis approach in which a VA tool expert works side-by-side with a domain expert during the analysis. The domain expert is the one who understands the significance of the data, and asks the questions that the collected data might address. The tool expert then creates visualizations to help find patterns in the data that might answer these questions. The short lag-time between the hypothesis generation and the rapid visual display of the data is the main advantage of a VA approach.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A Survey of Visual Analytic Pipelines
    Wang, Xu-Meng
    Zhang, Tian-Ye
    Ma, Yu-Xin
    Xia, Jing
    Chen, Wei
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2016, 31 (04) : 787 - 804
  • [22] A Survey of Visual Analytic Pipelines
    Xu-Meng Wang
    Tian-Ye Zhang
    Yu-Xin Ma
    Jing Xia
    Wei Chen
    Journal of Computer Science and Technology, 2016, 31 : 787 - 804
  • [23] TimeClassifier: a visual analytic system for the classification of multi-dimensional time series data
    Walker, James S.
    Jones, Mark W.
    Laramee, Robert S.
    Bidder, Owen R.
    Williams, Hannah J.
    Scott, Rebecca
    Shepard, Emily L. C.
    Wilson, Rory P.
    VISUAL COMPUTER, 2015, 31 (6-8) : 1067 - 1078
  • [24] TimeClassifier: a visual analytic system for the classification of multi-dimensional time series data
    James S. Walker
    Mark W. Jones
    Robert S. Laramee
    Owen R. Bidder
    Hannah J. Williams
    Rebecca Scott
    Emily L. C. Shepard
    Rory P. Wilson
    The Visual Computer, 2015, 31 : 1067 - 1078
  • [25] Using Visual Analytics techniques to evaluate the Data Quality in environmental datasets
    Coelho do Carmo, Alisson Fernando
    Shimabukuro, Milton Hirokazu
    de Alcantara, Enner Herenio
    BOLETIM DE CIENCIAS GEODESICAS, 2016, 22 (03): : 542 - 556
  • [26] Preliminary Guidelines for Combining Data Integration and Visual Data Analysis
    Coscia, Adam
    Suh, Ashley
    Chang, Remco
    Endert, Alex
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (10) : 6678 - 6690
  • [27] Quality-aware visual data analysis
    Matthew Ward
    Zaixian Xie
    Di Yang
    Elke Rundensteiner
    Computational Statistics, 2011, 26 : 567 - 584
  • [28] Survey on Visual Analysis of Event Sequence Data
    Guo, Yi
    Guo, Shunan
    Jin, Zhuochen
    Kaul, Smiti
    Gotz, David
    Cao, Nan
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (12) : 5091 - 5112
  • [29] Visual Analytics for Industrial Sensor Data Analysis
    Langer, Tristan
    Meisen, Tobias
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS 2021), VOL 1, 2021, : 584 - 593
  • [30] Quality-aware visual data analysis
    Ward, Matthew
    Xie, Zaixian
    Yang, Di
    Rundensteiner, Elke
    COMPUTATIONAL STATISTICS, 2011, 26 (04) : 567 - 584