Infinite dimensional stochastic differential equations for Dyson's model

被引:20
作者
Tsai, Li-Cheng [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
Dyson's Brownian motion; Dyson's model; Stochastic differential equations; Infinite-dimensional; Strong existence; Pathwise uniqueness; Correlation function; WIENER PROCESSES;
D O I
10.1007/s00440-015-0672-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we show the strong existence and the pathwise uniqueness of an infinite-dimensional stochastic differential equation (SDE) corresponding to the bulk limit of Dyson's Brownian Motion, for all . Our construction applies to an explicit and general class of initial conditions, including the lattice configuration and the sine process. We further show the convergence of the finite to infinite-dimensional SDE. This convergence concludes the determinantal formula of Katori and Tanemura (Commun Math Phys 293(2):469-497, 2010) for the solution of this SDE at beta=2.
引用
收藏
页码:801 / 850
页数:50
相关论文
共 24 条
[1]  
Anderson G. W., 2010, INTRO RANDOM MATRICE, V118
[2]  
[Anonymous], 2004, RANDOM MATRICES
[3]  
Cepa E., 1995, LECT NOTES MATH, V1613, P86, DOI DOI 10.1007/BFB0094202
[4]   KPZ line ensemble [J].
Corwin, Ivan ;
Hammond, Alan .
PROBABILITY THEORY AND RELATED FIELDS, 2016, 166 (1-2) :67-185
[5]   Brownian Gibbs property for Airy line ensembles [J].
Corwin, Ivan ;
Hammond, Alan .
INVENTIONES MATHEMATICAE, 2014, 195 (02) :441-508
[6]   THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS [J].
Corwin, Ivan .
RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (01)
[7]   A BROWNIAN-MOTION FOR EIGENVALUES OF A RANDOM MATRIX [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (06) :1191-+
[8]   GRADIENT DYNAMICS OF INFINITE POINT SYSTEMS [J].
FRITZ, J .
ANNALS OF PROBABILITY, 1987, 15 (02) :478-514
[9]  
Gorin V., 2014, ARXIV14092016
[10]  
Gorin V., 2014, MULTILEVEL DYSON BRO, P1