The geometry of Ulrich bundles on del Pezzo surfaces

被引:32
|
作者
Coskun, Emre [1 ]
Kulkarni, Rajesh S. [2 ]
Mustopa, Yusuf [3 ]
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Ulrich bundles; Algebraic surfaces; MINIMAL RESOLUTION CONJECTURE; POINTS; BINARY;
D O I
10.1016/j.jalgebra.2012.08.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a smooth del Pezzo surface X-d subset of P-d of degree d, we isolate the essential geometric obstruction to a vector bundle on X-d being an Ulrich bundle by showing that an irreducible curve D of degree dr on X-d represents the first Chern class of a rank-r Ulrich bundle on X-d if and only if the kernel bundle of the general. smooth element of vertical bar D vertical bar admits a generalized theta-divisor. Moreover, we show that any smooth arithmetically Gorenstein surface whose Ulrich bundles admit such a characterization is necessarily del Pezzo. This result is applied to produce new examples of complete intersection curves with semistable kernel bundle, and also combined, with work of Farkas, Mustata and Popa to relate the existence of Ulrich bundles on X-d to the Minimal Resolution Conjecture for curves lying on X-d. In particular, we show that a smooth irreducible curve D of degree 3r lying on a smooth cubic surface X-3 represents the first Chern class of an Ulrich bundle on X-3 if and, only if the Minimal Resolution Conjecture holds for the general smooth element of vertical bar D vertical bar. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:280 / 301
页数:22
相关论文
共 50 条
  • [41] Del Pezzo Surfaces with Many Symmetries
    Ivan Cheltsov
    Andrew Wilson
    Journal of Geometric Analysis, 2013, 23 : 1257 - 1289
  • [42] Stable Polarized del Pezzo Surfaces
    Cheltsov, Ivan
    Martinez-Garcia, Jesus
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (18) : 5477 - 5505
  • [43] ALGEBRAIC POINTS ON DEL PEZZO SURFACES
    CORAY, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (24): : 1531 - 1534
  • [44] Weak del Pezzo surfaces with irregularity
    Schroeer, Stefan
    TOHOKU MATHEMATICAL JOURNAL, 2007, 59 (02) : 293 - 322
  • [45] Admissible subcategories of del Pezzo surfaces
    Pirozhkov, Dmitrii
    ADVANCES IN MATHEMATICS, 2023, 424
  • [46] Poisson cohomology of Del Pezzo surfaces
    Hong, Wei
    Xu, Ping
    JOURNAL OF ALGEBRA, 2011, 336 (01) : 378 - 390
  • [47] THE BRAUER GROUP OF DEL PEZZO SURFACES
    Carter, Andrea C.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (02) : 261 - 287
  • [48] DEL PEZZO SURFACES OF SIXTH DEGREE
    COLLIOTT.JL
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 275 (02): : 109 - &
  • [49] UNSTABLE POLARIZED DEL PEZZO SURFACES
    Cheltsov, Ivan
    Martinez-Garcia, Jesus
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (10) : 7255 - 7296
  • [50] Del Pezzo orders on projective surfaces
    Chan, D
    Kulkarni, RS
    ADVANCES IN MATHEMATICS, 2003, 173 (01) : 144 - 177