The geometry of Ulrich bundles on del Pezzo surfaces

被引:32
|
作者
Coskun, Emre [1 ]
Kulkarni, Rajesh S. [2 ]
Mustopa, Yusuf [3 ]
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Ulrich bundles; Algebraic surfaces; MINIMAL RESOLUTION CONJECTURE; POINTS; BINARY;
D O I
10.1016/j.jalgebra.2012.08.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a smooth del Pezzo surface X-d subset of P-d of degree d, we isolate the essential geometric obstruction to a vector bundle on X-d being an Ulrich bundle by showing that an irreducible curve D of degree dr on X-d represents the first Chern class of a rank-r Ulrich bundle on X-d if and only if the kernel bundle of the general. smooth element of vertical bar D vertical bar admits a generalized theta-divisor. Moreover, we show that any smooth arithmetically Gorenstein surface whose Ulrich bundles admit such a characterization is necessarily del Pezzo. This result is applied to produce new examples of complete intersection curves with semistable kernel bundle, and also combined, with work of Farkas, Mustata and Popa to relate the existence of Ulrich bundles on X-d to the Minimal Resolution Conjecture for curves lying on X-d. In particular, we show that a smooth irreducible curve D of degree 3r lying on a smooth cubic surface X-3 represents the first Chern class of an Ulrich bundle on X-3 if and, only if the Minimal Resolution Conjecture holds for the general smooth element of vertical bar D vertical bar. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:280 / 301
页数:22
相关论文
共 50 条
  • [1] Ulrich bundles on Del Pezzo threefolds
    Ciliberto, Ciro
    Flamini, Flaminio
    Knutsen, Andreas Leopold
    JOURNAL OF ALGEBRA, 2023, 634 : 209 - 236
  • [2] Ulrich trichotomy on del Pezzo surfaces
    Coskun, Emre
    Genc, Ozhan
    ADVANCES IN GEOMETRY, 2023, 23 (01) : 51 - 68
  • [3] Koszul property of Ulrich bundles and rationality of moduli spaces of stable bundles on Del Pezzo surfaces
    Bangere, Purnaprajna
    Mukherjee, Jayan
    Raychaudhury, Debaditya
    MANUSCRIPTA MATHEMATICA, 2024, 174 (3-4) : 847 - 874
  • [4] ACM BUNDLES ON DEL PEZZO SURFACES
    Pons-Llopis, Joan
    Tonini, Fabio
    MATEMATICHE, 2009, 64 (02): : 177 - 211
  • [5] ENUMERATIVE GEOMETRY OF DEL PEZZO SURFACES
    Lin, Yu-shen
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (05) : 3015 - 3054
  • [6] The enumerative geometry of Del Pezzo surfaces via degenerations
    Coskun, Izzet
    AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (03) : 751 - 786
  • [7] ON FULL EXCEPTIONAL COLLECTIONS OF LINE BUNDLES ON DEL PEZZO SURFACES
    Elagin, Alexey
    Lunts, Valery
    MOSCOW MATHEMATICAL JOURNAL, 2016, 16 (04) : 691 - 709
  • [8] Jets of antimulticanonical bundles on Del Pezzo surfaces of degree ≤ 2
    Lanteri, A
    Mallavibarrena, R
    ALGEBRAIC GEOMETRY -GERMANY: A VOLUME IN MEMORY OF PAOLO FRANCIA, 2002, : 257 - 276
  • [9] Real-Fibered Morphisms of del Pezzo Surfaces and Conic Bundles
    Mario Kummer
    Cédric Le Texier
    Matilde Manzaroli
    Discrete & Computational Geometry, 2023, 69 : 849 - 872
  • [10] Real-Fibered Morphisms of del Pezzo Surfaces and Conic Bundles
    Kummer, Mario
    Le Texier, Cedric
    Manzaroli, Matilde
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 69 (03) : 849 - 872