Breakup of elongated droplets in microfluidic T-junctions

被引:16
作者
Haringa, Cees [1 ]
de Jong, Conrad [1 ]
Hoang, Duong A. [1 ]
Portela, Luis M. [1 ]
Kleijn, Chris R. [1 ]
Kreutzer, Michiel T. [1 ]
van Steijn, Volkert [1 ]
机构
[1] Delft Univ Technol, Fac Appl Sci, van der Maasweg 9, NL-2629 HZ Delft, Netherlands
来源
PHYSICAL REVIEW FLUIDS | 2019年 / 4卷 / 02期
关键词
RECTANGULAR MICROCHANNELS; BUBBLES; FLOW; MICRODROPLETS; FABRICATION; TECHNOLOGY; GENERATION; PRESSURE; DYNAMICS; LIQUID;
D O I
10.1103/PhysRevFluids.4.024203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show experimentally, and explain theoretically, what velocity is needed to break an elongated droplet entering a microfluidic T-junction. Our experiments on short droplets confirm previous experimental and theoretical work that shows that the critical velocity for breakup scales with the inverse of the length of the droplet raised to the fifth power. For long elongated droplets that have a length about thrice the channel width, we reveal a drastically different scaling Taking into account that a long droplet remains squeezed between the channel walls when it enters a T-j unction, such that the gutters in the corners of the channel are the main route for the continuous phase to flow around the droplet, we developed a model that explains that the critical velocity for breakup is inversely proportional to the droplet length. This model for the transition between breaking and nonbreaking droplets is in excellent agreement with our experiments.
引用
收藏
页数:14
相关论文
共 56 条
  • [1] Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices
    Adamson, David N.
    Mustafi, Debarshi
    Zhang, John X. J.
    Zheng, Bo
    Ismagilov, Rustem F.
    [J]. LAB ON A CHIP, 2006, 6 (09) : 1178 - 1186
  • [2] Numerical investigation of elongated drops in a microfluidic T-junction
    Afkhami, S.
    Leshansky, A. M.
    Renardy, Y.
    [J]. PHYSICS OF FLUIDS, 2011, 23 (02)
  • [3] Ultrahigh-throughput screening in drop-based microfluidics for directed evolution
    Agresti, Jeremy J.
    Antipov, Eugene
    Abate, Adam R.
    Ahn, Keunho
    Rowat, Amy C.
    Baret, Jean-Christophe
    Marquez, Manuel
    Klibanov, Alexander M.
    Griffiths, Andrew D.
    Weitz, David A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (09) : 4004 - 4009
  • [4] Modeling shapes and dynamics of confined bubbles
    Ajaev, VS
    Homsy, GM
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2006, 38 : 277 - 307
  • [5] Droplets and Bubbles in Microfluidic Devices
    Anna, Shelley Lynn
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, VOL 48, 2016, 48 : 285 - 309
  • [6] Droplet breakup in an asymmetric microfluidic T junction
    Bedram, Ahmad
    Moosavi, Ali
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2011, 34 (08)
  • [7] Droplet microfluidic technology for single-cell high-throughput screening
    Brouzes, Eric
    Medkova, Martina
    Savenelli, Neal
    Marran, Dave
    Twardowski, Mariusz
    Hutchison, J. Brian
    Rothberg, Jonathan M.
    Link, Darren R.
    Perrimon, Norbert
    Samuels, Michael L.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (34) : 14195 - 14200
  • [8] Trapping Microfluidic Drops in Wells of Surface Energy
    Dangla, Remi
    Lee, Sungyon
    Baroud, Charles N.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (12)
  • [9] The trapping and release of bubbles from a linear pore
    Dawson, Geoffrey
    Lee, Sungyon
    Juel, Anne
    [J]. JOURNAL OF FLUID MECHANICS, 2013, 722 : 437 - 460
  • [10] The steady propagation of an air finger into a rectangular tube
    De Lozar, Alberto
    Juel, Anne
    Hazel, Andrew L.
    [J]. JOURNAL OF FLUID MECHANICS, 2008, 614 : 173 - 195