Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae

被引:66
作者
Ji, Xiao-Jun [1 ]
Xia, Zhi-Fang [1 ]
Fu, Ning-Hua [1 ]
Nie, Zhi-Kui [1 ]
Shen, Meng-Qiu [1 ]
Tian, Qian-Qian [1 ]
Huang, He [1 ]
机构
[1] Nanjing Univ Technol, State Key Lab Mat Oriented Chem Engn, Coll Biotechnol & Pharmaceut Engn, Nanjing 210009, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Acetoin; 2,3-Butanediol; Cofactor engineering; Klebsiella pneumoniae; NADH oxidase; ENHANCED 2,3-BUTANEDIOL PRODUCTION; 1,3-PROPANEDIOL PRODUCTION; ACETOIN; DEHYDROGENASE; FERMENTATION; INCREASE;
D O I
10.1186/1754-6834-6-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Acetoin is an important bio-based platform chemical. However, it is usually existed as a minor byproduct of 2,3-butanediol fermentation in bacteria. Results: The present study reports introducing an exogenous NAD(+) regeneration sysytem into a 2,3-butanediol producing strain Klebsiella pneumoniae to increse the accumulation of acetoin. Batch fermentation suggested that heterologous expression of the NADH oxidase in K. pneumoniae resulted in large decreases in the intracellular NADH concentration (1.4 fold) and NADH/NAD(+) ratio (2.0 fold). Metabolic flux analysis revealed that fluxes to acetoin and acetic acid were enhanced, whereas, production of lactic acid and ethanol were decreased, with the accumualation of 2,3-butanediol nearly unaltered. By fed-batch culture of the recombinant, the highest reported acetoin production level (25.9 g/L) by Klebsiella species was obtained. Conclusions: The present study indicates that microbial production of acetoin could be improved by decreasing the intracellular NADH/NAD(+) ratio in K. pneumoniae. It demonstrated that the cofactor engineering method, which is by manipulating the level of intracellular cofactors to redirect cellular metabolism, could be employed to achieve a high efficiency of producing the NAD(+)-dependent microbial metabolite.
引用
收藏
页数:9
相关论文
共 43 条
  • [1] THE PRODUCTION OF 2,3-BUTANEDIOL BY FERMENTATION OF HIGH TEST MOLASSES
    AFSCHAR, AS
    BELLGARDT, KH
    ROSSELL, CEV
    CZOK, A
    SCHALLER, K
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1991, 34 (05) : 582 - 585
  • [2] The NADH oxidase of Streptococcus pneumoniae:: its involvement in competence and virulence
    Auzat, I
    Chapuy-Regaud, S
    Le Bras, G
    Dos Santos, D
    Ogunniyi, AD
    Le Thomas, I
    Garel, JR
    Paton, JC
    Trombe, MC
    [J]. MOLECULAR MICROBIOLOGY, 1999, 34 (05) : 1018 - 1028
  • [3] IMPROVED CYCLING ASSAY FOR NICOTINAMIDE ADENINE-DINUCLEOTIDE
    BERNOFSKY, C
    SWAN, M
    [J]. ANALYTICAL BIOCHEMISTRY, 1973, 53 (02) : 452 - 458
  • [4] The effect of carbon sources and lactate dehydrogenase deletion on 1,2-propanediol production in Escherichia coli
    Berríos-Rivera, SJ
    San, KY
    Bennett, GN
    [J]. JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2003, 30 (01) : 34 - 40
  • [5] Metabolic engineering of Escherichia coli:: Increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase
    Berríos-Rivera, SJ
    Bennett, GN
    San, KY
    [J]. METABOLIC ENGINEERING, 2002, 4 (03) : 217 - 229
  • [6] The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli
    Berríos- Rivera, SJ
    San, KY
    Bennett, GN
    [J]. METABOLIC ENGINEERING, 2002, 4 (03) : 238 - 247
  • [7] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  • [8] de Felipe FL, 1998, J BACTERIOL, V180, P3804
  • [9] de Felipe FL, 2001, INT DAIRY J, V11, P37, DOI 10.1016/S0958-6946(01)00031-0
  • [10] REGULATION OF NAD METABOLISM IN SALMONELLA-TYPHIMURIUM - MOLECULAR SEQUENCE-ANALYSIS OF THE BIFUNCTIONAL NADR REGULATOR AND THE NADA-PNUC OPERON
    FOSTER, JW
    PARK, YK
    PENFOUND, T
    FENGER, T
    SPECTOR, MP
    [J]. JOURNAL OF BACTERIOLOGY, 1990, 172 (08) : 4187 - 4196