Estimates for the Szego projection on uniformly finite-type subdomains of C2

被引:0
作者
Peterson, Aaron [1 ]
机构
[1] Northwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USA
关键词
Szego projection; finite type; unbounded domain; regularity; VECTOR-FIELDS; TUBE DOMAINS; BERGMAN; KERNELS; METRICS; MANIFOLDS; EQUATIONS;
D O I
10.4171/RMI/982
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove precise growth and cancellation estimates for the Szego kernel of an unbounded model domain Omega subset of C-2 under the assumption that b Omega satisfies a uniform finite-type hypothesis. Such domains have smooth boundaries which are not algebraic varieties, and therefore admit no global homogeneities that allow one to use compactness arguments in order to obtain results. As an application of our estimates, we prove that the Szego projection S of Omega is exactly regular on the non-isotropic Sobolev spaces NLkp (b Omega) for 1 < p < +infinity and k = 0, 1, . . . , and also that S: Gamma(alpha)(E) -> Gamma(alpha)(b Omega), for E is an element of b Omega and 0 < alpha < +infinity, with a bound that depends only on diam(E), where Gamma(alpha) are the non-isotropic Holder spaces.
引用
收藏
页码:111 / 193
页数:83
相关论文
共 38 条
[1]  
[Anonymous], 1971, PRINCETON MATH SER
[2]  
[Anonymous], 1992, WADSWORTH BROOKS COL
[3]  
[Anonymous], 1972, Mathematical Notes
[4]   An application of John ellipsoids to the Szeg kernel on unbounded convex domains [J].
Benguria, Soledad .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (03) :347-396
[5]  
Berenstein C.A., 1991, GRADUATE TEXTS MATH, V125
[6]   CONVEX HYPERSURFACES AND FOURIER-TRANSFORMS [J].
BRUNA, J ;
NAGEL, A ;
WAINGER, S .
ANNALS OF MATHEMATICS, 1988, 127 (02) :333-365
[7]  
[Charpentier Philippe Charpentier Philippe], 2014, [Алгебра и анализ, St. Petersburg Mathematical Journal, Algebra i analiz], V26, P196
[8]   COUNTEREXAMPLES TO ANALYTIC HYPOELLIPTICITY FOR DOMAINS OF FINITE-TYPE [J].
CHRIST, M ;
GELLER, D .
ANNALS OF MATHEMATICS, 1992, 135 (03) :551-566
[9]  
CHRIST M, 1988, J AM MATH SOC, V1, P587
[10]  
David G., 1985, REV MAT IBEROAM, V1, P1, DOI 10.4171/RMI/17