Pseudo-Bonding and Electric-Field Harmony for Li-Rich Mn-Based Oxide Cathode

被引:216
作者
Chen, Jun [1 ]
Zou, Guoqiang [1 ]
Deng, Wentao [1 ]
Huang, Zhaodong [2 ]
Gao, Xu [1 ]
Liu, Cheng [1 ]
Yin, Shouyi [1 ]
Liu, Huanqing [1 ]
Deng, Xinglan [1 ]
Tian, Ye [1 ]
Li, Jiayang [1 ]
Wang, Chiwei [3 ]
Wang, Di [1 ]
Wu, Hanwen [1 ]
Yang, Li [1 ]
Hou, Hongshuai [1 ]
Ji, Xiaobo [1 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
[2] City Univ Hong Kong, Mat Sci & Engn, Hong Kong 999077, Peoples R China
[3] Tianjin Ev Energies Co Ltd, Tianjin 300380, Peoples R China
基金
中国国家自然科学基金;
关键词
charge transfer; electric-field; lattice oxygen evolution; Li-rich Mn-based oxide cathodes; pseudo-bonding; TRANSITION-METAL OXIDE; LITHIUM-ION BATTERIES; HIGH-CAPACITY; SURFACE MODIFICATION; ORGANIC FRAMEWORKS; OXYGEN VACANCIES; CATIONIC REDOX; BULK LATTICE; ORIGIN; PERFORMANCE;
D O I
10.1002/adfm.202004302
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The practical application of Li-rich Mn-based oxide cathode is predominately retarded by the capacity decline and voltage fading, associated with the structure distortion and anionic redox reactions. Here, a linkage-functionalized modification approach to tackle these challenges via a synchronous lithium oxidation strategy is reported. The doping of Ce in the bulk phase activates the pseudo-bonding effect, effectively stabilizing the lattice oxygen evolution and suppressing the structure distortion. Interestingly, it also induces the formation of spinel phase Li(4)Mn(5)O(12)in the subsurface, which in turn constructs the phase boundaries, thereby arousing the interior self-built-in electric field to prevent the outward migration of bulk oxygen anions and boost the charge transfer. Moreover, the formed coating layer Li(2)CeO(3)with oxygen vacancies accelerates Li(+)diffusion and mitigates electrolyte cauterization. The corresponding cathode exhibits superior long-cycle stability after 300 cycles with only a 0.013% capacity drop and 1.76 mV voltage decay per cycle. This work sheds new light on the development of Li-rich Mn-based oxide cathodes toward high energy density applications.
引用
收藏
页数:17
相关论文
共 123 条
[11]   Restraining Oxygen Loss and Suppressing Structural Distortion in a Newly Ti-Substituted Layered Oxide P2-Na0.66Li0.22Ti0.15Mn0.63O2 [J].
Cao, Xin ;
Li, Xiang ;
Qiao, Yu ;
Jia, Min ;
Qiu, Feilong ;
He, Yibo ;
He, Ping ;
Zhou, Haoshen .
ACS ENERGY LETTERS, 2019, 4 (10) :2409-+
[12]   An anionic Na(I)-organic framework platform: separation of organic dyes and post-modification for highly sensitive detection of picric acid [J].
Chen, Di-Ming ;
Tian, Jia-Yue ;
Wang, Zhuo-Wei ;
Liu, Chun-Sen ;
Chen, Min ;
Du, Miao .
CHEMICAL COMMUNICATIONS, 2017, 53 (77) :10668-10671
[13]   Hollow CuS Nanoboxes as Li-Free Cathode for High-Rate and Long-Life Lithium Metal Batteries [J].
Chen, Yawei ;
Li, Jianming ;
Lei, Zhanwu ;
Huo, Yakun ;
Yang, Lanlan ;
Zeng, Suyuan ;
Ding, Honghe ;
Qin, Yi ;
Jie, Yulin ;
Huang, Fanyang ;
Li, Qi ;
Zhu, Junfa ;
Cao, Ruiguo ;
Zhang, Genqiang ;
Jiao, Shuhong ;
Xu, Dongsheng .
ADVANCED ENERGY MATERIALS, 2020, 10 (07)
[14]   Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production [J].
Chen, Yuanjun ;
Ji, Shufang ;
Sun, Wenming ;
Lei, Yongpeng ;
Wang, Qichen ;
Li, Ang ;
Chen, Wenxing ;
Zhou, Gang ;
Zhang, Zedong ;
Wang, Yu ;
Zheng, Lirong ;
Zhang, Qinghua ;
Gu, Lin ;
Han, Xiaodong ;
Wang, Dingsheng ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (03) :1295-1301
[15]   Unraveling Oxygen Evolution in Li-Rich Oxides: A Unified Modeling of the Intermediate Peroxo/Superoxo-like Dimers [J].
Chen, Zhenlian ;
Li, Jun ;
Zeng, Xiao Cheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (27) :10751-10759
[16]   Countering the Voltage Decay in High Capacity xLi2MnO3•(1-x)LiMO2 Electrodes (M=Mn, Ni, Co) for Li+-Ion Batteries [J].
Croy, Jason R. ;
Kim, Donghan ;
Balasubramanian, Mahalingam ;
Gallagher, Kevin ;
Kang, Sun-Ho ;
Thackeray, Michael M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (06) :A781-A790
[17]   Manipulation of an ionic and electronic conductive interface for highly-stable high-voltage cathodes [J].
Deng, Sixu ;
Wang, Biqiong ;
Yuan, Yifei ;
Li, Xia ;
Sun, Qian ;
Doyle-Davis, Kieran ;
Banis, Mohammad Norouzi ;
Liang, Jianneng ;
Zhao, Yang ;
Li, Junjie ;
Li, Ruying ;
Sham, Tsun-Kong ;
Shahbazian-Yassar, Reza ;
Wang, Hao ;
Cai, Mei ;
Lu, Jun ;
Sun, Xueliang .
NANO ENERGY, 2019, 65
[18]   Layered/Spinel Heterostructured and Hierarchical Micro/Nanostructured Li-Rich Cathode Materials with Enhanced Electrochemical Properties for Li-Ion Batteries [J].
Deng, Ya-Ping ;
Yin, Zu-Wei ;
Wu, Zhen-Guo ;
Zhang, Shao-Jian ;
Fu, Fang ;
Zhang, Tao ;
Li, Jun-Tao ;
Huang, Ling ;
Sun, Shi-Gang .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (25) :21065-21070
[19]   An Ultra-Long-Life Lithium-Rich Li1.2Mn0.6Ni0.2O2 Cathode by Three-in-One Surface Modification for Lithium-Ion Batteries [J].
Ding, Xiaokai ;
Luo, Dong ;
Cui, Jiaxiang ;
Xie, Huixian ;
Ren, Qingqing ;
Lin, Zhan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (20) :7778-7782
[20]   Stable heteroepitaxial interface of Li-rich layered oxide cathodes with enhanced lithium storage [J].
Ding, Zhengping ;
Zhang, Chunxiao ;
Xu, Sheng ;
Liu, Jiatu ;
Liang, Chaoping ;
Chen, Libao ;
Wang, Peng ;
Ivey, Douglas G. ;
Deng, Yida ;
Wei, Weifeng .
ENERGY STORAGE MATERIALS, 2019, 21 :69-76