Dual time-frequency domain system identification

被引:31
|
作者
Aguero, Juan C. [1 ]
Tang, Wei
Yuz, Juan I. [2 ]
Delgado, Ramon [1 ]
Goodwin, Graham C. [1 ]
机构
[1] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
[2] Univ Tecn Federico Santa Maria, Dept Elect Engn, Valparaiso, Chile
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Robust system identification; Maximum likelihood; MAXIMUM-LIKELIHOOD-ESTIMATION; ROBUST IDENTIFICATION; STATE; MODELS; EM; CONVERGENCE; REGRESSION; MATRIX;
D O I
10.1016/j.automatica.2012.08.033
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we obtain the maximum likelihood estimate of the parameters of discrete-time linear models by using a dual time-frequency domain approach. We propose a formulation that considers a (reduced-rank) linear transformation of the available data. Such a transformation may correspond to different options: selection of time-domain data, transformation to the frequency domain, or selection of frequency-domain data obtained from time-domain samples. We use the proposed approach to identify multivariate systems represented in state-space form by using the Expectation-Maximisation algorithm. We illustrate the benefits of the approach via numerical examples. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3031 / 3041
页数:11
相关论文
共 50 条
  • [1] Target identification in the time-frequency domain
    Jouny, I
    Karunaratne, P
    Amin, M
    AUTOMATIC OBJECT RECOGNITION VI, 1996, 2756 : 249 - 260
  • [2] Target identification in the time-frequency domain
    Jouny, I
    Karunaratne, P
    Amin, M
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM 1997, VOLS 1-4, 1997, : 278 - 281
  • [3] Time-Frequency Domain Techniques for Power System Transients Identification
    Pullabhatla, Srikanth
    Chintakayala, Prasad
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS 2012 (INDIA 2012), 2012, 132 : 807 - +
  • [4] Non-stationary frequency domain system identification using time-frequency representations
    Guo, Yanlin
    Kareem, Ahsan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 72-73 : 712 - 726
  • [5] Identification of state-space systems using a dual time-frequency domain approach
    Agueero, Juan C.
    Yuz, Juan I.
    Goodwin, Graham C.
    Tang, Wei
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 2863 - 2868
  • [6] A Time-frequency Domain Identification Algorithm for A Complex System Dynamic Characteristic Parameters
    Zhao, Jian
    Yu, Xinke
    Yu, Ming
    Yan, Xianguo
    2012 7TH INTERNATIONAL CONFERENCE ON SYSTEM OF SYSTEMS ENGINEERING (SOSE), 2012, : 34 - 37
  • [7] Output only dynamic identification in time-frequency domain
    De Stefano, A
    Ceravolo, R
    Sabia, D
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 447 - 452
  • [8] Benthic nodal time-frequency dual-domain electromagnetic acquisition system and test
    Ren, Wenjing
    He, Zhanxiang
    Sun, Weibin
    Zhang, Dongyang
    Lu, Zhaoyang
    Lu, Yao
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2021, 56 (02): : 398 - 406
  • [9] Gravitational wave signal identification and transformations in time-frequency domain
    Thirumalainambi, Rajkumar
    Thompson, David E.
    LECTURE NOTES IN SIGNAL SCIENCE, INTERNET AND EDUCATION (SSIP'07/MIV'07/DIWEB'07), 2007, : 141 - +
  • [10] The identification of the severity of COPD using time-frequency domain analyses
    Bartels, MN
    Gates, GJ
    Downey, JA
    De Meersman, RE
    FASEB JOURNAL, 2005, 19 (04): : A642 - A643