On the existence of weak solutions of nonlinear degenerate parabolic system with variable exponents

被引:6
作者
Shangerganesh, L. [1 ]
Nyamoradi, N. [2 ]
Mani, V. N. Deiva [3 ]
Karthikeyan, S. [3 ]
机构
[1] Natl Inst Technol, Dept Humanities & Sci, Farmagudi, Goa, India
[2] Razi Univ, Dept Math, Kermanshah 67149, Iran
[3] Periyar Univ, Dept Math, Salem, India
关键词
Cancer invasion parabolic system; Weak solution; Faedo-Galerkin method; CHEMOTAXIS-HAPTOTAXIS MODEL; REACTION-DIFFUSION MODEL; CLASSICAL-SOLUTIONS; GLOBAL EXISTENCE; RENORMALIZED SOLUTIONS; MATHEMATICAL-MODEL; BLOW-UP; UNIQUENESS; EQUATIONS; INVASION;
D O I
10.1016/j.camwa.2017.09.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of the present paper is establishing the existence and uniqueness of weak solutions for the nonlinear degenerate reaction-diffusion system with variable exponents. A model also is proposed to characterize the invasion of cancer cells towards healthy cells with acidification environment. Moreover, the main results of this paper are obtained using regularization problem, the Faedo-Galerkin approximation method, some apriori estimates, compactness results and the Gronwall Lemma. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:322 / 334
页数:13
相关论文
共 44 条
[1]  
Anderson A.R.A., 2000, J. Theor. Med, V2
[2]   A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion [J].
Anderson, ARA .
MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2005, 22 (02) :163-186
[3]   Structural stability for variable exponent elliptic problems, I: The p(x)-Laplacian kind problems [J].
Andreianov, B. ;
Bendahmane, M. ;
Ouaro, S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) :2-24
[4]   Structural stability for variable exponent elliptic problems, II: The p(u)-Laplacian and coupled problems [J].
Andreianov, B. ;
Bendahmane, M. ;
Ouaro, S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4649-4660
[5]  
[Anonymous], 2003, Cancer Modelling and Simulation
[6]  
Antontsev S, 2007, INT SER NUMER MATH, V154, P33
[7]   Blow-up of solutions to parabolic equations with nonstandard growth conditions [J].
Antontsev, S. ;
Shmarev, S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (09) :2633-2645
[8]   Vanishing solutions of anisotropic parabolic equations with variable nonlinearity [J].
Antontsev, S. ;
Shmarev, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) :371-391
[9]  
Antontsev S, 2006, HBK DIFF EQUAT STATI, V3, P1, DOI 10.1016/S1874-5733(06)80005-7
[10]   Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue [J].
Bendahmane, Mostafa ;
Karlsen, Kenneth H. .
NETWORKS AND HETEROGENEOUS MEDIA, 2006, 1 (01) :185-218