Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation

被引:69
|
作者
Jardak, M. [1 ]
Su, C. -H. [1 ]
Karniadakis, G. E. [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
Stochastic differential equations; Wiener-Hermite expansions; polynomial chaos; uncertainty;
D O I
10.1023/A:1015125304044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new algorithm based on Wiener-Hermite functionals combined with Fourier collocation to solve the advection equation with stochastic transport velocity. We develop different stategies of representing the stochastic input, and demonstrate that this approach is orders of magnitude more efficient than Monte Carlo simulations for comparable accuracy.
引用
收藏
页码:319 / 338
页数:20
相关论文
共 50 条
  • [1] Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation
    M. Jardak
    C.-H. Su
    G. E. Karniadakis
    Journal of Scientific Computing, 2002, 17 : 319 - 338
  • [2] STABILITY AND CONVERGENCE OF SPECTRAL POLYNOMIAL METHODS - APPLICATION TO THE ADVECTION EQUATION
    MERCIER, B
    RAIRO-ANALYSE NUMERIQUE-NUMERICAL ANALYSIS, 1982, 16 (01): : 67 - 100
  • [3] The Spectral Collocation Method for the Stochastic Allen-Cahn Equation via Generalized Polynomial Chaos
    Li, Ning
    Meng, Bo
    Feng, Xinlong
    Gui, Dongwei
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2015, 68 (01) : 11 - 29
  • [4] Solution of a stochastic Darcy equation by polynomial chaos expansion
    Shalimova I.A.
    Sabelfeld K.K.
    Numerical Analysis and Applications, 2017, 10 (3) : 259 - 271
  • [5] Solving stochastic Burgers equation using polynomial chaos decomposition
    Wang, Xiao-Dong
    Kang, Shun
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2010, 31 (03): : 393 - 398
  • [6] Polynomial Spectral Collocation Method for Space Fractional Advection-Diffusion Equation
    Tian, WenYi
    Deng, Weihua
    Wu, Yujiang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (02) : 514 - 535
  • [7] Generalized polynomial chaos decomposition and spectral methods for the stochastic Stokes equations
    Qu, Dong
    Xu, Chuanju
    COMPUTERS & FLUIDS, 2013, 71 : 250 - 260
  • [8] Time and static eigenvalues of the stochastic transport equation by the methods of polynomial chaos
    Ayres, D.
    Williams, M. M. R.
    Eaton, M. D.
    PROGRESS IN NUCLEAR ENERGY, 2013, 67 : 33 - 55
  • [9] Stochastic solutions for the two-dimensional advection-diffusion equation
    Wang, XL
    Xiu, DB
    Karniadakis, GE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (02): : 578 - 590
  • [10] Spectral representation of stochastic field data using sparse polynomial chaos expansions
    Abraham, Simon
    Tsirikoglou, Panagiotis
    Miranda, Joao
    Lacor, Chris
    Contino, Francesco
    Ghorbaniasl, Ghader
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 367 : 109 - 120