A novel fractional delayed matrix cosine and sine

被引:26
作者
Mahmudov, N., I [1 ]
机构
[1] Eastern Mediterranean Univ, Dept Math, Mersin 10, Gazimagusa, Tr North Cyprus, Turkey
关键词
Fractional linear delay systems; Delayed matrix cosine; Delayed matrix sine; SYSTEMS; REPRESENTATION;
D O I
10.1016/j.aml.2019.01.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the fractional delayed matrix cosine and sine functions and use the variation of constants method to obtain an explicit formula for a solution to the initial value problem for a Riemann-Liouville sequential fractional linear time-delay system of order 1 < 2 alpha <= 2. Our results extend those for fractional linear time-delay systems and novel for the classical case alpha = 1. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 15 条
[1]  
[Anonymous], 2008, NONLINEAR OSCILLATIO
[2]   Boundary Value Problems for Delay Differential Systems [J].
Boichuk, A. ;
Diblik, J. ;
Khusainov, D. ;
Ruzickova, M. .
ADVANCES IN DIFFERENCE EQUATIONS, 2010,
[3]   Boundary-Value Problems for Weakly Nonlinear Delay Differential Systems [J].
Boichuk, A. ;
Diblik, J. ;
Khusainov, D. ;
Ruzickova, M. .
ABSTRACT AND APPLIED ANALYSIS, 2011,
[4]   Fredholm's boundary-value problems for differential systems with a single delay [J].
Boichuk, A. ;
Diblik, J. ;
Khusainov, D. ;
Ruzickova, M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) :2251-2258
[5]   On systems of linear fractional differential equations with constant coefficients [J].
Bonilla, B. ;
Rivero, M. ;
Trujillo, J. J. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) :68-78
[6]   Finite-time stability of a class of oscillating systems with two delays [J].
Cao, Xiaokai ;
Wang, JinRong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (13) :4943-4954
[7]   Representation of a solution of the Cauchy problem for an oscillating system with two delays and permutable matrices [J].
Diblik, J. ;
Feckan, M. ;
Pospisil, M. .
UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (01) :64-76
[8]   Control of Oscillating Systems with a Single Delay [J].
Diblik, J. ;
Khusainov, D. Ya. ;
Lukacova, J. ;
Ruzickova, M. .
ADVANCES IN DIFFERENCE EQUATIONS, 2010,
[9]   Relative controllability in systems with pure delay [J].
Khusainov, DY ;
Shuklin, GV .
INTERNATIONAL APPLIED MECHANICS, 2005, 41 (02) :210-221
[10]   Representation of a solution for a fractional linear system with pure delay [J].
Liang, Chengbin ;
Wang, JinRong ;
O' Regan, D. .
APPLIED MATHEMATICS LETTERS, 2018, 77 :72-78