Multi-omics differentially classify disease state and treatment outcome in pediatric Crohn's disease

被引:86
作者
Douglas, Gavin M. [1 ]
Hansen, Richard [2 ]
Jones, Casey M. A. [3 ]
Dunn, Katherine A. [4 ]
Comeau, Andre M. [5 ]
Bielawski, Joseph P. [4 ]
Tayler, Rachel [2 ]
El-Omar, Emad M. [6 ]
Russell, Richard K. [2 ]
Hold, Georgina L. [6 ]
Langille, Morgan G. I. [1 ,3 ,5 ]
Van Limbergen, Johan [7 ]
机构
[1] Dalhousie Univ, Dept Microbiol & Immunol, Halifax, NS, Canada
[2] Royal Hosp Children, Dept Paediat Gastroenterol, Glasgow, Lanark, Scotland
[3] Dalhousie Univ, Dept Pharmacol, Halifax, NS, Canada
[4] Dalhousie Univ, Dept Biol, Halifax, NS, Canada
[5] Dalhousie Univ, CGEB, Integrated Microbiome Resource, Halifax, NS, Canada
[6] UNSW, Dept Med, St George & Sutherland Clin Sch, Sydney, NSW, Australia
[7] Dalhousie Univ, Dept Pediat, Halifax, NS, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
Crohn's disease; Treatment response; Machine learning; Microbiome; Treatment-naive; Pediatric; INFLAMMATORY BOWEL DISEASES; INTESTINAL MICROBIOTA; READ ALIGNMENT; ASSOCIATION; GENOME; FRAMEWORK; GENES; TIME; SUSCEPTIBILITY; POPULATION;
D O I
10.1186/s40168-018-0398-3
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: Crohn's disease (CD) has an unclear etiology, but there is growing evidence of a direct link with a dysbiotic microbiome. Many gut microbes have previously been associated with CD, but these have mainly been confounded with patients' ongoing treatments. Additionally, most analyses of CD patients' microbiomes have focused on microbes in stool samples, which yield different insights than profiling biopsy samples. Results: We sequenced the 16S rRNA gene (16S) and carried out shotgun metagenomics (MGS) from the intestinal biopsies of 20 treatment-naive CD and 20 control pediatric patients. We identified the abundances of microbial taxa and inferred functional categories within each dataset. We also identified known human genetic variants from the MGS data. We then used a machine learning approach to determine the classification accuracy when these datasets, collapsed to different hierarchical groupings, were used independently to classify patients by disease state and by CD patients' response to treatment. We found that 16S-identified microbes could classify patients with higher accuracy in both cases. Based on follow-ups with these patients, we identified which microbes and functions were best for predicting disease state and response to treatment, including several previously identified markers. By combining the top features from all significant models into a single model, we could compare the relative importance of these predictive features. We found that 16S-identified microbes are the best predictors of CD state whereas MGS-identified markers perform best for classifying treatment response. Conclusions: We demonstrate for the first time that useful predictors of CD treatment response can be produced from shotgun MGS sequencing of biopsy samples despite the complications related to large proportions of host DNA. The top predictive features that we identified in this study could be useful for building an improved classifier for CD and treatment response based on sufferers' microbiome in the future.
引用
收藏
页数:12
相关论文
共 70 条
[1]   Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome [J].
Abubucker, Sahar ;
Segata, Nicola ;
Goll, Johannes ;
Schubert, Alyxandria M. ;
Izard, Jacques ;
Cantarel, Brandi L. ;
Rodriguez-Mueller, Beltran ;
Zucker, Jeremy ;
Thiagarajan, Mathangi ;
Henrissat, Bernard ;
White, Owen ;
Kelley, Scott T. ;
Methe, Barbara ;
Schloss, Patrick D. ;
Gevers, Dirk ;
Mitreva, Makedonka ;
Huttenhower, Curtis .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (06)
[2]   A global reference for human genetic variation [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Wang, Jun ;
Wilson, Richard K. ;
Boerwinkle, Eric ;
Doddapaneni, Harsha ;
Han, Yi ;
Korchina, Viktoriya ;
Kovar, Christie ;
Lee, Sandra ;
Muzny, Donna ;
Reid, Jeffrey G. ;
Zhu, Yiming ;
Chang, Yuqi ;
Feng, Qiang ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Lan, Tianming ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Liu, Shengmao ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Tang, Meifang ;
Wang, Bo .
NATURE, 2015, 526 (7571) :68-+
[3]   Epidemiology and risk factors for IBD [J].
Ananthakrishnan, Ashwin N. .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2015, 12 (04) :205-217
[4]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   The genetics and immunopathogenesis of inflammatory bowel disease [J].
Cho, Judy H. .
NATURE REVIEWS IMMUNOLOGY, 2008, 8 (06) :458-466
[7]   Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study [J].
Cleynen, Isabelle ;
Boucher, Gabrielle ;
Jostins, Luke ;
Schumm, L. Philip ;
Zeissig, Sebastian ;
Ahmad, Tariq ;
Andersen, Vibeke ;
Andrews, Jane M. ;
Annese, Vito ;
Brand, Stephan ;
Brant, Steven R. ;
Cho, Judy H. ;
Daly, Mark J. ;
Dubinsky, Marla ;
Duerr, Richard H. ;
Ferguson, Lynnette R. ;
Franke, Andre ;
Gearry, Richard B. ;
Goyette, Philippe ;
Hakonarson, Hakon ;
Halfvarson, Jonas ;
Hov, Johannes R. ;
Huang, Hailang ;
Kennedy, Nicholas A. ;
Kupcinskas, Limas ;
Lawrance, Ian C. ;
Lee, James C. ;
Satsangi, Jack ;
Schreiber, Stephan ;
Theatre, Emilie ;
van der Meulen-de Jong, Andrea E. ;
Weersma, Rinse K. ;
Wilson, David C. ;
Parkes, Miles ;
Vermeire, Severine ;
Rioux, John D. ;
Mansfield, John ;
Silverberg, Mark S. ;
Radford-Smith, Graham ;
McGovern, Dermot P. B. ;
Barrett, Jeffrey C. ;
Lees, Charlie W. .
LANCET, 2016, 387 (10014) :156-167
[8]   Microbiome Helper: a Custom and Streamlined Workflow for Microbiome Research [J].
Comeau, Andre M. ;
Douglas, Gavin M. ;
Langille, Morgan G. I. .
MSYSTEMS, 2017, 2 (01)
[9]   The variant call format and VCFtools [J].
Danecek, Petr ;
Auton, Adam ;
Abecasis, Goncalo ;
Albers, Cornelis A. ;
Banks, Eric ;
DePristo, Mark A. ;
Handsaker, Robert E. ;
Lunter, Gerton ;
Marth, Gabor T. ;
Sherry, Stephen T. ;
McVean, Gilean ;
Durbin, Richard .
BIOINFORMATICS, 2011, 27 (15) :2156-2158
[10]   Association between specific mucosa-associated microbiota in Crohn's disease at the time of resection and subsequent disease recurrence: A pilot study [J].
De Cruz, Peter ;
Kang, Seungha ;
Wagner, Josef ;
Buckley, Michael ;
Sim, Winnie H. ;
Prideaux, Lani ;
Lockett, Trevor ;
McSweeney, Chris ;
Morrison, Mark ;
Kirkwood, Carl D. ;
Kamm, Michael A. .
JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2015, 30 (02) :268-278