Phytoremediation potential of wild plants growing on soil contaminated with heavy metals

被引:25
|
作者
Cudic, Vladica [1 ]
Stojiljkovic, Dragoslava [2 ]
Jovovic, Aleksandar [2 ]
机构
[1] PWW Doo, 25 Maj 65b, Nish 18000, Serbia
[2] Univ Belgrade, Fac Mech Engn, Belgrade, Serbia
来源
ARHIV ZA HIGIJENU RADA I TOKSIKOLOGIJU-ARCHIVES OF INDUSTRIAL HYGIENE AND TOXICOLOGY | 2016年 / 67卷 / 03期
关键词
arsenic; bioconcentration factor; biomass; cadmium; chromium; copper; hyperaccumulator; lead; mullein; nickel; phytoextraction; phytostabilisation; ragweed; rhizosphere; translocation factor; zinc; BIOMASS PRODUCTION; COPPICE CULTURE; DEGRADED SOILS; POPLAR CLONES; ACCUMULATION; MINE; GROWTH; TREES; PHYTOEXTRACTION; MANAGEMENT;
D O I
10.1515/aiht-2016-67-2829
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Phytoremediation is an emerging technology that employs higher plants to cleanup contaminated environments, including metal-polluted soils. Because it produces a biomass rich in extracted toxic metals, further treatment of this biomass is necessary. The aim of our study was to assess the five-year potential of the following native wild plants to produce biomass and remove heavy metals from a polluted site: poplar (Populus ssp.), ailanthus (Ailanthus glandulosa L.), false acacia (Robinia pseudoacacia L.), ragweed (Artemisia artemisiifolia L.), and mullein (Verbascum thapsus L). Average soil contamination with Pb, Cd, Zn, Cu, Ni, Cr, and As in the root zone was 22,948.6 mg kg(-1), 865.4 mg kg(-1), 85,301.7 mg kg(-1), 3,193.3 mg kg(-1), 50.7 mg kg(-1), 41.7 mg kg(-1), and 617.9 mg kg(-1), respectively. We measured moisture and ash content, concentrations of Pb, Cd, Zn, Cu, Ni, Cr, and As in the above-ground parts of the plants and in ash produced by combustion of the plants, plus gross calorific values. The plants' phytoextraction and phytostabilisation potential was evaluated based on their bioconcentration factor (BCF) and translocation factor (TF). Mullein was identified as a hyperaccumulator for Cd. It also showed a higher gross calorific value (19,735 kJ v) than ragweed (16,469 kJ kg(-1)). The results of this study suggest that mullein has a great potential for phytoextraction and for biomass generation, and that ragweed could be an effective tool of phytostabilisation.
引用
收藏
页码:229 / 239
页数:11
相关论文
共 50 条
  • [21] Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge
    Placek, Agnieszka
    Grobelak, Anna
    Kacprzak, Malgorzata
    INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2016, 18 (06) : 605 - 618
  • [22] Phytoremediation Potential of Plants Growing on the Pb-Contaminated Soil at the Song Tho Pb Mine, Thailand
    Yongpisanphop, Jiraporn
    Babel, Sandhya
    Kruatrachue, Maleeya
    Pokethitiyook, Prayad
    SOIL & SEDIMENT CONTAMINATION, 2017, 26 (04): : 426 - 437
  • [23] Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides
    Anning, Alexander Kofi
    Akoto, Ruth
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2018, 148 : 97 - 104
  • [24] Phytoremediation potential of Xanthium strumarium for heavy metals contaminated soils at roadsides
    Khalid, N.
    Noman, A.
    Aqeel, M.
    Masood, A.
    Tufail, A.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2019, 16 (04) : 2091 - 2100
  • [25] Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii E. L. Wolf) and the potential for phytoremediation of heavy metals
    Salam, Mir Md Abdus
    Kaipiainen, Erik
    Mohsin, Muhammad
    Villa, Aki
    Kuittinen, Suvi
    Pulkkinen, Pertti
    Pelkonen, Paavo
    Mehtatalo, Lauri
    Pappinen, Ari
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2016, 183 : 467 - 477
  • [26] POTENTIAL OF RAPESEED (Brassica napus L.) FOR PHYTOREMEDIATION OF SOILS CONTAMINATED WITH HEAVY METALS
    Angelova, V. R.
    Ivanova, R. I.
    Todorov, J. M.
    Ivanov, K. I.
    JOURNAL OF ENVIRONMENTAL PROTECTION AND ECOLOGY, 2017, 18 (02): : 468 - 478
  • [27] Can Urban Grassland Plants Contribute to the Phytoremediation of Soils Contaminated with Heavy Metals
    Stancic, Zvjezdana
    Fiket, Zeljka
    Vujevic, Dinko
    MOLECULES, 2022, 27 (19):
  • [28] Bioaccumulation of heavy metals in Limnobium laevigatum and Ludwigia peploides: their phytoremediation potential in water contaminated with heavy metals
    Fernandez San Juan, M. Rocio
    Albornoz, Carolina B.
    Larsen, Karen
    Najle, Roberto
    ENVIRONMENTAL EARTH SCIENCES, 2018, 77 (11)
  • [29] Heavy metal phytoremediation of a poplar clone in a contaminated soil in southern Italy
    Ancona, Valeria
    Caracciolo, Anna Barra
    Campanale, Claudia
    Rascio, Ida
    Grenni, Paola
    Di Lenola, Martina
    Bagnuolo, Giuseppe
    Uricchio, Vito Felice
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2020, 95 (04) : 940 - 949
  • [30] Phytoremediation potential of Miscanthus × giganteus and Spartina pectinata in soil contaminated with heavy metals
    Jolanta Korzeniowska
    Ewa Stanislawska-Glubiak
    Environmental Science and Pollution Research, 2015, 22 : 11648 - 11657