A new absorption-compression refrigeration system using a mid-temperature heat source for freezing application

被引:7
|
作者
Chen, Yi [1 ,2 ]
Han, Wei [1 ]
Sun, Liuli [3 ]
Jin, Hongguang [1 ]
机构
[1] Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] State Nucl Power Technol R&D Ctr, Beijing 100190, Peoples R China
来源
CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE | 2015年 / 75卷
关键词
Absorption-compression refrigeration; Freezing application; Mid-temperature heat source; Thermodynamic analysis; POWER;
D O I
10.1016/j.egypro.2015.07.455
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The use of an absorption refrigeration system is a promising way to utilize waste heat from industrial processes. Ammonia-water absorption refrigeration system is commonly used for freezing applications with temperatures lower than 0 degrees C. When the refrigeration temperature is lower than -30 degrees C, the performance dramatically decreases. We proposed a new absorption-compression refrigeration system to produce cooling energy at -30 degrees C to -55 degrees C. The proposed system comprised three subsystems, namely, a power generation subsystem using an ammonia-water mixture as the working fluid, an ammonia-water absorption refrigeration subsystem, and a CO2 compression refrigeration subsystem. The system utilized the heat source in a cascade manner. The power subsystem converted the high-temperature portion of heat into power to drive the CO2 compression refrigeration subsystem, thereby resulting in the generation of low-temperature cooling energy. The low-temperature portion of heat is converted into cooling energy to offer the heat sink of the CO2 compression refrigeration subsystem. A simulation study was conducted, and results showed that the coefficient of performance of the proposed system was 0.277, which was approximately 50% higher than that of a conventional two-stage absorption refrigeration system. This work may provide a new way to produce low-temperature cooling energy using mid-temperature heat source. (C) 2015 Published by Elsevier Ltd.
引用
收藏
页码:560 / 565
页数:6
相关论文
共 45 条
  • [41] Thermo-economic and environmental evaluation of a novel SOFC based trigeneration system using organic Rankine cycle and cascaded vapor compression-absorption refrigeration system
    Khan, Yunis
    Singh, Pawan Kumar
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2025, 57
  • [42] A new heating system based on coupled air source absorption heat pump for cold regions: Energy saving analysis
    Wu, Wei
    Shi, Wenxing
    Wang, Baolong
    Li, Xianting
    ENERGY CONVERSION AND MANAGEMENT, 2013, 76 : 811 - 817
  • [43] New low temperature industrial waste heat district heating system based on natural gas fired boilers with absorption heat exchangers
    Sun, Fangtian
    Cheng, Lijiao
    Fu, Lin
    Gao, Junwei
    APPLIED THERMAL ENGINEERING, 2017, 125 : 1437 - 1445
  • [44] Thermal analysis of high-temperature proton exchange membrane fuel cell integrated compression-assisted absorption heat pump system
    Liang, Yu
    Zhang, Xiao
    Cai, Liang
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2023, 147 : 91 - 105
  • [45] Thermo-economic and environmental analyses based multi-objective optimization of vapor compression-absorption cascaded refrigeration system using NSGA-II technique
    Jain, Vaibhav
    Sachdeva, Gulshan
    Kachhwaha, Surendra Singh
    Patel, Bhavesh
    ENERGY CONVERSION AND MANAGEMENT, 2016, 113 : 230 - 242