THE DYNAMICS OF NQ-SYSTEMS IN THE PLANE

被引:5
作者
Mencinger, Matej [1 ,2 ]
Kutnjak, Milan [3 ]
机构
[1] Univ Maribor, Fac Civil Engn, SLO-2000 Maribor, Slovenia
[2] IMFM, Ljubljana 1000, Slovenia
[3] Univ Maribor, Fac Elect Engn & Comp Sci, SLO-2000 Maribor, Slovenia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2009年 / 19卷 / 01期
关键词
Homogeneous system; quadratic system; discrete dynamical system; nilpotent; commutative algebra; nonassociative algebra; ALGEBRAS; STABILITY; ODES; MAPS;
D O I
10.1142/S0218127409022786
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The dynamics of discrete homogeneous quadratic planar maps is considered via the algebraic approach. There is a one-to-one correspondence between these systems and 2D commutative algebras (c.f. [Markus, 1960]). In particular, we consider the systems corresponding to algebras which contain some nilpotents of rank two (i.e. NQ-systems). Markus algebraic classification is used to obtain the class representatives. The case-by-case dynamical analysis is presented. It is proven that there is no chaos in NQ-systems. Yet, some cases are really interesting from the dynamical and bifurcational points of view.
引用
收藏
页码:117 / 133
页数:17
相关论文
共 18 条
  • [1] Beardon A. F., 1991, Graduate Texts in Mathematics, V132
  • [2] Dynamics of maps with nilpotent Jacobians
    Chamberland, M
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (01) : 49 - 56
  • [3] Hopkins N. C., 1997, DIFF EQS DYNAMICAL S, V5, P121
  • [4] Kaplan J.L., 1979, Nonlinear Anal. Theory Methods Appl., V3, P49
  • [5] Kinyon M. K., 1994, DIFF EQUAT+, P115
  • [6] QUADRATIC DYNAMICAL-SYSTEMS AND ALGEBRAS
    KINYON, MK
    SAGLE, AA
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 117 (01) : 67 - 126
  • [7] Kutnjak M., 2007, Nonlinear Phenomena in Complex Systems, V10, P176
  • [8] KUTNJAK M, 2008, INT J BIFURCAT CHAOS, V18, P1
  • [9] Markus L., 1960, Ann. Math. Stud, V45, P185
  • [10] Mencinger M., 2004, Nonlinear Phenomena in Complex Systems, V7, P263