Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers

被引:123
作者
Wang, Qingguo [1 ]
Jia, Peilin [1 ,2 ]
Li, Fei [3 ]
Chen, Haiquan [4 ,5 ]
Ji, Hongbin [3 ]
Hucks, Donald [6 ]
Dahlman, Kimberly Brown [6 ,7 ]
Pao, William [6 ,8 ]
Zhao, Zhongming [1 ,2 ,7 ,9 ]
机构
[1] Vanderbilt Univ, Sch Med, Dept Biomed Informat, Nashville, TN 37212 USA
[2] Vanderbilt Univ, Med Ctr, Ctr Quantitat Sci, Nashville, TN USA
[3] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell Biol, State Key Lab Cell Biol, Shanghai, Peoples R China
[4] Fudan Univ, Shanghai Canc Ctr, Dept Thorac Surg, Shanghai 200433, Peoples R China
[5] Shanghai Med Coll, Dept Oncol, Shanghai, Peoples R China
[6] Vanderbilt Univ, Med Ctr, Vanderbilt Ingram Canc Ctr, Nashville, TN 37212 USA
[7] Vanderbilt Univ, Sch Med, Dept Canc Biol, Nashville, TN 37212 USA
[8] Vanderbilt Univ, Sch Med, Div Hematol Oncol, Dept Med, Nashville, TN 37212 USA
[9] Vanderbilt Univ, Sch Med, Dept Psychiat, Nashville, TN 37212 USA
来源
GENOME MEDICINE | 2013年 / 5卷
基金
美国国家卫生研究院;
关键词
SINGLE-NUCLEOTIDE VARIANTS; EVOLUTION; MELANOMA;
D O I
10.1186/gm495
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: Driven by high throughput next generation sequencing technologies and the pressing need to decipher cancer genomes, computational approaches for detecting somatic single nucleotide variants (sSNVs) have undergone dramatic improvements during the past 2 years. The recently developed tools typically compare a tumor sample directly with a matched normal sample at each variant locus in order to increase the accuracy of sSNV calling. These programs also address the detection of sSNVs at low allele frequencies, allowing for the study of tumor heterogeneity, cancer subclones, and mutation evolution in cancer development. Methods: We used whole genome sequencing (Illumina Genome Analyzer IIx platform) of a melanoma sample and matched blood, whole exome sequencing (Illumina HiSeq 2000 platform) of 18 lung tumor-normal pairs and seven lung cancer cell lines to evaluate six tools for sSNV detection: EBCall, JointSNVMix, MuTect, SomaticSniper, Strelka, and VarScan 2, with a focus on MuTect and VarScan 2, two widely used publicly available software tools. Default/suggested parameters were used to run these tools. The missense sSNVs detected in these samples were validated through PCR and direct sequencing of genomic DNA from the samples. We also simulated 10 tumor-normal pairs to explore the ability of these programs to detect low allelic-frequency sSNVs. Results: Out of the 237 sSNVs successfully validated in our cancer samples, VarScan 2 and MuTect detected the most of any tools (that is, 204 and 192, respectively). MuTect identified 11 more low-coverage validated sSNVs than VarScan 2, but missed 11 more sSNVs with alternate alleles in normal samples than VarScan 2. When examining the false calls of each tool using 169 invalidated sSNVs, we observed > 63% false calls detected in the lung cancer cell lines had alternate alleles in normal samples. Additionally, from our simulation data, VarScan 2 identified more sSNVs than other tools, while MuTect characterized most low allelic-fraction sSNVs. Conclusions: Our study explored the typical false-positive and false-negative detections that arise from the use of sSNV-calling tools. Our results suggest that despite recent progress, these tools have significant room for improvement, especially in the discrimination of low coverage/allelic-frequency sSNVs and sSNVs with alternate alleles in normal samples.
引用
收藏
页数:8
相关论文
共 27 条
  • [1] Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation
    Chapman, Paul B.
    Hauschild, Axel
    Robert, Caroline
    Haanen, John B.
    Ascierto, Paolo
    Larkin, James
    Dummer, Reinhard
    Garbe, Claus
    Testori, Alessandro
    Maio, Michele
    Hogg, David
    Lorigan, Paul
    Lebbe, Celeste
    Jouary, Thomas
    Schadendorf, Dirk
    Ribas, Antoni
    O'Day, Steven J.
    Sosman, Jeffrey A.
    Kirkwood, John M.
    Eggermont, Alexander M. M.
    Dreno, Brigitte
    Nolop, Keith
    Li, Jiang
    Nelson, Betty
    Hou, Jeannie
    Lee, Richard J.
    Flaherty, Keith T.
    McArthur, Grant A.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2011, 364 (26) : 2507 - 2516
  • [2] Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples
    Cibulskis, Kristian
    Lawrence, Michael S.
    Carter, Scott L.
    Sivachenko, Andrey
    Jaffe, David
    Sougnez, Carrie
    Gabriel, Stacey
    Meyerson, Matthew
    Lander, Eric S.
    Getz, Gad
    [J]. NATURE BIOTECHNOLOGY, 2013, 31 (03) : 213 - 219
  • [3] BRAFL597 Mutations in Melanoma Are Associated with Sensitivity to MEK Inhibitors
    Dahlman, Kimberly Brown
    Xia, Junfeng
    Hutchinson, Katherine
    Ng, Charles
    Hucks, Donald
    Jia, Peilin
    Atefi, Mohammad
    Su, Zengliu
    Branch, Suzanne
    Lyle, Pamela L.
    Hicks, Donna J.
    Bozon, Viviana
    Glaspy, John A.
    Rosen, Neal
    Solit, David B.
    Netterville, James L.
    Vnencak-Jones, Cindy L.
    Sosman, Jeffrey A.
    Ribas, Antoni
    Zhao, Zhongming
    Pao, William
    [J]. CANCER DISCOVERY, 2012, 2 (09) : 791 - 797
  • [4] Feature-based classifiers for somatic mutation detection in tumour-normal paired sequencing data
    Ding, Jiarui
    Bashashati, Ali
    Roth, Andrew
    Oloumi, Arusha
    Tse, Kane
    Zeng, Thomas
    Haffari, Gholamreza
    Hirst, Martin
    Marra, Marco A.
    Condon, Anne
    Aparicio, Samuel
    Shah, Sohrab P.
    [J]. BIOINFORMATICS, 2012, 28 (02) : 167 - 175
  • [5] Ultrasensitive detection of rare mutations using next-generation targeted resequencing
    Flaherty, Patrick
    Natsoulis, Georges
    Muralidharan, Omkar
    Winters, Mark
    Buenrostro, Jason
    Bell, John
    Brown, Sheldon
    Holodniy, Mark
    Zhang, Nancy
    Ji, Hanlee P.
    [J]. NUCLEIC ACIDS RESEARCH, 2012, 40 (01) : e2
  • [6] Reliable detection of subclonal single-nucleotide variants in tumour cell populations
    Gerstung, Moritz
    Beisel, Christian
    Rechsteiner, Markus
    Wild, Peter
    Schraml, Peter
    Moch, Holger
    Beerenwinkel, Niko
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [7] SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors
    Goya, Rodrigo
    Sun, Mark G. F.
    Morin, Ryan D.
    Leung, Gillian
    Ha, Gavin
    Wiegand, Kimberley C.
    Senz, Janine
    Crisan, Anamaria
    Marra, Marco A.
    Hirst, Martin
    Huntsman, David
    Murphy, Kevin P.
    Aparicio, Sam
    Shah, Sohrab P.
    [J]. BIOINFORMATICS, 2010, 26 (06) : 730 - 736
  • [8] Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma
    Green, Michael R.
    Gentles, Andrew J.
    Nair, Ramesh V.
    Irish, Jonathan M.
    Kihira, Shingo
    Liu, Chih Long
    Kela, Itai
    Hopmans, Erik S.
    Myklebust, June H.
    Ji, Hanlee
    Plevritis, Sylvia K.
    Levy, Ronald
    Alizadeh, Ash A.
    [J]. BLOOD, 2013, 121 (09) : 1604 - 1611
  • [9] Comprehensive genomic characterization of squamous cell lung cancers
    Hammerman, Peter S.
    Lawrence, Michael S.
    Voet, Douglas
    Jing, Rui
    Cibulskis, Kristian
    Sivachenko, Andrey
    Stojanov, Petar
    McKenna, Aaron
    Lander, Eric S.
    Gabriel, Stacey
    Getz, Gad
    Sougnez, Carrie
    Imielinski, Marcin
    Helman, Elena
    Hernandez, Bryan
    Pho, Nam H.
    Meyerson, Matthew
    Chu, Andy
    Chun, Hye-Jung E.
    Mungall, Andrew J.
    Pleasance, Erin
    Robertson, A. Gordon
    Sipahimalani, Payal
    Stoll, Dominik
    Balasundaram, Miruna
    Birol, Inanc
    Butterfield, Yaron S. N.
    Chuah, Eric
    Coope, Robin J. N.
    Corbett, Richard
    Dhalla, Noreen
    Guin, Ranabir
    Hirst, Anhe Carrie
    Hirst, Martin
    Holt, Robert A.
    Lee, Darlene
    Li, Haiyan I.
    Mayo, Michael
    Moore, Richard A.
    Mungall, Karen
    Nip, Ka Ming
    Olshen, Adam
    Schein, Jacqueline E.
    Slobodan, Jared R.
    Tam, Angela
    Thiessen, Nina
    Varhol, Richard
    Zeng, Thomas
    Zhao, Yongjun
    Jones, Steven J. M.
    [J]. NATURE, 2012, 489 (7417) : 519 - 525
  • [10] pIRS: Profile-based Illumina pair-end reads simulator
    Hu, Xuesong
    Yuan, Jianying
    Shi, Yujian
    Lu, Jianliang
    Liu, Binghang
    Li, Zhenyu
    Chen, Yanxiang
    Mu, Desheng
    Zhang, Hao
    Li, Nan
    Yue, Zhen
    Bai, Fan
    Li, Heng
    Fan, Wei
    [J]. BIOINFORMATICS, 2012, 28 (11) : 1533 - 1535