Quantum phase diagram of bosons in optical lattices

被引:75
作者
dos Santos, F. E. A. [1 ]
Pelster, A. [2 ]
机构
[1] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany
[2] Univ Duisburg Essen, Fachbereich Phys, D-47048 Duisburg, Germany
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 01期
关键词
boson systems; metal-insulator transition; optical lattices; perturbation theory; quantum theory; variational techniques; BOSE-GAS; LOCALIZATION; TRANSITIONS; EXPANSIONS; SUPERFLUID; INSULATOR; FIELD;
D O I
10.1103/PhysRevA.79.013614
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We work out two different analytical methods for calculating the boundary of the Mott-insulator-superfluid (MI-SF) quantum phase transition for scalar bosons in cubic optical lattices of arbitrary dimension at zero temperature which improve upon the seminal mean-field result. The first one is a variational method, which is inspired by variational perturbation theory, whereas the second one is based on the field-theoretic concept of effective potential. Within both analytical approaches we achieve a considerable improvement of the location of the MI-SF quantum phase transition for the first Mott lobe in excellent agreement with recent numerical results from quantum Monte Carlo simulations in two and three dimensions. Thus, our analytical results for the whole quantum phase diagram can be regarded as being essentially exact for all practical purposes.
引用
收藏
页数:12
相关论文
共 39 条
[1]   QUANTUM CRITICAL PHENOMENA IN ONE-DIMENSIONAL BOSE SYSTEMS [J].
BATROUNI, GG ;
SCALETTAR, RT ;
ZIMANYI, GT .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1765-1768
[2]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[3]   Effective action approach for quantum phase transitions in bosonic lattices [J].
Bradlyn, Barry ;
dos Santos, Francisco Ednilson A. ;
Pelster, Axel .
PHYSICAL REVIEW A, 2009, 79 (01)
[4]   Exact solution of the infinite-range-hopping Bose-Hubbard model [J].
Bru, JB ;
Dorlas, TC .
JOURNAL OF STATISTICAL PHYSICS, 2003, 113 (1-2) :177-196
[5]   Phase diagram for ultracold bosons in optical lattices and superlattices [J].
Buonsante, P ;
Vezzani, A .
PHYSICAL REVIEW A, 2004, 70 (03) :033608-1
[6]   Correlated bosons on a lattice: Dynamical mean-field theory for Bose-Einstein condensed and normal phases [J].
Byczuk, Krzysztof ;
Vollhardt, Dieter .
PHYSICAL REVIEW B, 2008, 77 (23)
[7]   Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model [J].
Capogrosso-Sansone, B. ;
Prokof'ev, N. V. ;
Svistunov, B. V. .
PHYSICAL REVIEW B, 2007, 75 (13)
[8]   Monte Carlo study of the two-dimensional Bose-Hubbard model [J].
Capogrosso-Sansone, Barbara ;
Soeyler, Sebnem Guenes ;
Prokof'ev, Nikolay ;
Svistunov, Boris .
PHYSICAL REVIEW A, 2008, 77 (01)
[9]   Dynamics and thermodynamics of the Bose-Hubbard model [J].
Elstner, N ;
Monien, H .
PHYSICAL REVIEW B, 1999, 59 (19) :12184-12187
[10]  
FISHER MPA, 1989, PHYS REV B, V40, P546, DOI [10.1103/PhysRevB.40.546, 10.1063/1.38820]