Smoothing and dispersive estimates for ID Schrodinger equations with BV coefficients and applications

被引:23
作者
Burq, N
Planchon, F
机构
[1] Univ Paris 11, Dept Math, UMR 8628, CNRS, F-91405 Orsay, France
[2] Univ Paris 13, UMR 7539, Inst Galilee, Lab Anal Geometrie & Applicat, F-93430 Villetaneuse, France
关键词
bounded variations; Benjamin-Ono equation; dispersive estimates;
D O I
10.1016/j.jfa.2006.02.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove smoothing estimates for Schrodinger equations i partial derivative(t)phi + partial derivative(x)(a(x)partial derivative(x)phi) = 0 with a(x) is an element of BV, real and bounded from below. We then bootstrap these estimates to obtain optimal Strichartz and maximal function estimates, all of which turn out to be identical to the constant coefficient case. We also provide counterexamples showing a c BV to be in a sense a minimal requirement. Finally, we provide an application to sharp well-posedness for a generalized Benjamin-Ono equation. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:265 / 298
页数:34
相关论文
共 31 条
[1]   FUNCTIONAL-CALCULUS FOR A CLASS OF COMPLEX ELLIPTIC-OPERATORS IN DIMENSION ONE (AND APPLICATIONS TO SOME COMPLEX ELLIPTIC-EQUATIONS IN DIMENSION-2) [J].
AUSCHER, P ;
TCHAMITCHIAN, P .
ANNALES DE L INSTITUT FOURIER, 1995, 45 (03) :721-+
[2]   Heat kernels of second order complex elliptic operators and applications [J].
Auscher, P ;
McIntosh, A ;
Tchamitchian, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 152 (01) :22-73
[3]   Dispersion and Strichartz inequalities for Schrodinger equations with singular coefficients [J].
Banica, V .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (04) :868-883
[4]  
Bergh J., 1976, GRUNDLEHREN MATH WIS, V223
[5]   Smoothing effect for Schrodinger boundary value problems [J].
Burq, N .
DUKE MATHEMATICAL JOURNAL, 2004, 123 (02) :403-427
[6]  
BURQ N, 2005, IN PRESS ANN SCI ECO
[7]  
BURQ N, 2005, UNPUB ILL POSEDNESS
[8]  
BURQ N, 2005, WELL POSEDNESS BENJA
[9]   Concentration and lack of observability of waves in highly heterogeneous media [J].
Castro, C ;
Zuazua, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (01) :39-72
[10]   Maximal functions associated to filtrations [J].
Christ, M ;
Kiselev, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (02) :409-425