Complete monotonicity of the entropy in the central limit theorem for gamma and inverse Gaussian distributions

被引:4
作者
Yu, Yaming [1 ]
机构
[1] Univ Calif Irvine, Dept Stat, Irvine, CA 92697 USA
关键词
D O I
10.1016/j.spl.2008.08.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let be the differential entropy of the gamma distribution Gam(alpha, root alpha). It is shown that (1/2) log(2 pi e) - H(g) (alpha) is a completely monotone function of alpha. This refines the monotonicity of the entropy in the central limit theorem for gamma random variables. A similar result holds for the inverse Gaussian family. How generally this complete monotonicity holds is left as an open problem. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:270 / 274
页数:5
相关论文
共 50 条
[21]   METRIC ENTROPY AND CENTRAL LIMIT THEOREM IN C(S) [J].
DUDLEY, RM .
ANNALES DE L INSTITUT FOURIER, 1974, 24 (02) :49-60
[22]   Pedagogical Simulation of Sampling Distributions and the Central Limit Theorem [J].
Hagtvedt, Reidar ;
Jones, Gregory ;
Jones, Kari .
TEACHING STATISTICS, 2007, 29 (03) :94-97
[24]   On the pointwise central limit theorem and mixtures of stable distributions [J].
Berkes, I ;
Csaki, E .
STATISTICS & PROBABILITY LETTERS, 1996, 29 (04) :361-368
[25]   Test of fit for the inverse Gaussian and gamma distributions under censoring [J].
Anaya, K ;
O'Reilly, F .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2001, 30 (04) :757-773
[26]   Graphical tests for the assumption of gamma and inverse Gaussian frailty distributions [J].
Economou, P ;
Caroni, C .
LIFETIME DATA ANALYSIS, 2005, 11 (04) :565-582
[27]   Gamma-Generalized Inverse Gaussian Class of Distributions with Applications [J].
Gomez-Deniz, Emilio ;
Calderin-Ojeda, Enrique ;
Maria Sarabia, Jose .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (06) :919-933
[28]   Graphical Tests for the Assumption of Gamma and Inverse Gaussian Frailty Distributions [J].
P. Economou ;
C. Caroni .
Lifetime Data Analysis, 2005, 11 :565-582
[29]   Central limit theorem for the complex eigenvalues of Gaussian random matrices [J].
Goel, Advay ;
Lopatto, Patrick ;
Xie, Xiaoyu .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2024, 29
[30]   Almost Sure Central Limit Theorem for a Nonstationary Gaussian Sequence [J].
Qing-pei Zang .
Journal of Inequalities and Applications, 2010