Generalized Verma Modules over Lie Algebras of Weyl Type

被引:1
作者
Xin, Bin [1 ,2 ]
Wu, Yuezhu [3 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
[2] Guizhou Normal Univ, Coll Math & Comp Sci, Guiyang 550001, Peoples R China
[3] Qufu Normal Univ, Dept Math, Qufu 273165, Shandong, Peoples R China
关键词
generalized Verma module; generalized Weyl algebra; W-infinity algebra; quasifinite; irreducibility; HIGHEST WEIGHT REPRESENTATIONS; MATRIX DIFFERENTIAL-OPERATORS; QUASIFINITE REPRESENTATIONS; CLASSIFICATION; 2-COCYCLES; FAMILY;
D O I
10.1142/S1005386709000157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a field F of characteristic 0 and an additive subgroup Gamma of F, there corresponds a Lie algebra (W) over cap(Gamma) of generalized Weyl type. Given a total order of Gamma and a weight Lambda, a generalized Verma (W) over cap(Gamma)-module M (Lambda, <) is defined. In this paper, the irreducibility of M(Lambda, <) is completely determined. It is also proved that an irreducible highest weight module over the W-infinity algebra W1+infinity is quasifinite if and only if it is a proper quotient of a Verma module.
引用
收藏
页码:131 / 142
页数:12
相关论文
共 19 条
[1]   CHARACTER AND DETERMINANT FORMULAS OF QUASIFINITE REPRESENTATION OF THE W-1+INFINITY ALGEBRA [J].
AWATA, H ;
FUKUMA, M ;
MATSUO, Y ;
ODAKE, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (02) :377-400
[2]   Quasifinite highest weight modules over the Lie algebra of matrix differential operators on the circle [J].
Boyallian, C ;
Kac, VG ;
Liberati, JI ;
Yan, CH .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (05) :2910-2928
[3]   W1+INFINITY AND W(GLN) WITH CENTRAL CHARGE-N [J].
FRENKEL, E ;
KAC, V ;
RADUL, A ;
WANG, WQ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 170 (02) :337-357
[4]   Verma modules over generalized Virasoro algebras Vir[G] [J].
Hu, J ;
Wang, XD ;
Zhao, KM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 177 (01) :61-69
[5]   QUASIFINITE HIGHEST WEIGHT MODULES OVER THE LIE-ALGEBRA OF DIFFERENTIAL-OPERATORS ON THE CIRCLE [J].
KAC, V ;
RADUL, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :429-457
[6]  
KAC VG, 1998, ADV MATH, V139, P46
[7]   Quasi-finite modules for Lie superalgebras of infinite rank [J].
Lam, N ;
Zhang, RB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (01) :403-439
[8]   Verma modules over the generalized Heisenberg-Virasoro algebra [J].
Shen, Ran ;
Jiang, Qifen ;
Su, Yucai .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (04) :1464-1473
[9]   Classification of irreducible weight modules with a finite-dimensional weight space over twisted Heisenberg-Virasoro algebra [J].
Shen, Ran ;
Su, Yu Cai .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (01) :189-192
[10]   2-cocycles of the Lie superalgebras of Weyl type [J].
Song, GA ;
Su, YC .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (09) :2991-3007