Statistics of rigid fibers in strongly sheared turbulence

被引:11
作者
Bakhuis, Dennis [1 ,2 ]
Mathai, Varghese [1 ,2 ,3 ]
Verschoof, Ruben A. [1 ,2 ]
Ezeta, Rodrigo [1 ,2 ]
Lohse, Detlef [1 ,2 ,4 ]
Huisman, Sander G. [1 ,2 ]
Sun, Chao [1 ,2 ,5 ]
机构
[1] Univ Twente, MESA Inst, Phys Fluids Grp, Enschede, Netherlands
[2] Univ Twente, MESA Inst, Max Planck Ctr Twente Complex Fluid Dynam, Enschede, Netherlands
[3] Brown Univ, Sch Engn, Providence, RI 02912 USA
[4] Max Planck Inst Dynam & Self Org, Fassberg 17, Gottingen, Germany
[5] Tsinghua Univ, Dept Energy & Power Engn, Minist Educ, Ctr Combust Energy,Key Lab Thermal Sci & Power En, Beijing, Peoples R China
关键词
TAYLOR-COUETTE FLOW; ELLIPSOIDAL PARTICLES; DYNAMICS; TRANSPORT; RHEOLOGY; MOTION;
D O I
10.1103/PhysRevFluids.4.072301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Practically all flows are turbulent in nature and contain some kind of irregularly shaped particles, e.g., dirt, pollen, or life forms such as bacteria or insects. The effects of the particles on such flows and vice versa are highly nontrivial and are not completely understood, particularly when the particles are finite sized. Here, we report an experimental study of millimetric fibers in a strongly sheared turbulent flow. We find that the fibers show a preferred orientation of -0.38 pi +/- 0.05 pi (-68 +/- 9 degrees) with respect to the mean flow direction in high-Reynolds-number Taylor-Couette turbulence, for all studied Reynolds numbers, fiber concentrations, and locations. Despite the finite size of the anisotropic particles, we can explain the preferential alignment by using Jefferey's equation, which provides evidence of the benefit of a simplified point-particle approach. Furthermore, the fiber angular velocity is strongly intermittent, again indicative of point-particle-like behavior in turbulence. Thus large anisotropic particles still can retain signatures of the local flow despite classical spatial and temporal filtering effects.
引用
收藏
页数:9
相关论文
共 54 条
[1]   Experimental investigation of the turbulence induced by a bubble swarm rising within incident turbulence [J].
Almeras, Elise ;
Mathai, Varghese ;
Lohse, Detlef ;
Sun, Chao .
JOURNAL OF FLUID MECHANICS, 2017, 825 :1091-1112
[2]   Finite-sized rigid spheres in turbulent Taylor-Couette flow: effect on the overall drag [J].
Bakhuis, Dennis ;
Verschoof, Ruben A. ;
Mathai, Varghese ;
Huisman, Sander G. ;
Lohse, Detlef ;
Sun, Chao .
JOURNAL OF FLUID MECHANICS, 2018, 850 :246-261
[3]   Turbulent pair dispersion of inertial particles [J].
Bec, J. ;
Biferale, L. ;
Lanotte, A. S. ;
Scagliarini, A. ;
Toschi, F. .
JOURNAL OF FLUID MECHANICS, 2010, 645 :497-528
[4]   Slip velocity of large neutrally buoyant particles in turbulent flows [J].
Bellani, G. ;
Variano, E. A. .
NEW JOURNAL OF PHYSICS, 2012, 14
[5]   Shape effects on turbulent modulation by large nearly neutrally buoyant particles [J].
Bellani, Gabriele ;
Byron, Margaret L. ;
Collignon, Audric G. ;
Meyer, Colin R. ;
Variano, Evan A. .
JOURNAL OF FLUID MECHANICS, 2012, 712 :41-60
[6]   Microstructural Dynamics and Rheology of Suspensions of Rigid Fibers [J].
Butler, Jason E. ;
Snook, Braden .
ANNUAL REVIEW OF FLUID MECHANICS, VOL 50, 2018, 50 :299-318
[7]   Shear induced structures and transformations in complex fluids [J].
Butler, P .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 1999, 4 (03) :214-221
[8]   Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxen forces [J].
Calzavarini, E. ;
Volk, R. ;
Bourgoin, M. ;
Leveque, E. ;
Pinton, J. -F. ;
Toschi, F. .
JOURNAL OF FLUID MECHANICS, 2009, 630 :179-189
[9]   Quantifying turbulence-induced segregation of inertial particles [J].
Calzavarini, Enrico ;
Cencini, Massimo ;
Lohse, Detlef ;
Toschi, Federico .
PHYSICAL REVIEW LETTERS, 2008, 101 (08)
[10]   Orientation and rotation of inertial disk particles in wall turbulence [J].
Challabotla, Niranjan Reddy ;
Zhao, Lihao ;
Andersson, Helge I. .
JOURNAL OF FLUID MECHANICS, 2015, 766