LiNi0.5Mn0.5O2 hierarchical nanorods as high-capacity cathode materials for Li-ion batteries

被引:19
|
作者
Yang, Jingang [1 ,2 ]
Guo, Biao [1 ]
He, Hong [1 ]
Li, Yuan [1 ]
Song, Chunlin [1 ]
Liu, Gang [1 ]
机构
[1] Southwest Univ, Fac Mat & Energy, Chongqing 400715, Peoples R China
[2] Nankai Univ, Minist Educ, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
LNMO-NRs; High-capacity; Cathode materials; Lithium-ion batteries; HIGH-RATE CAPABILITY; PERFORMANCE;
D O I
10.1016/j.jallcom.2016.12.264
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiNi0.5Mn0.5O2 nanorods (LNMO-NRs) stacked with nanoparticles have been prepared and investigated as cathode materials for rechargeable lithium-ion batteries. The LNMO NRs were obtained through solid-state Li and Ni implantation of alpha-MnO2 nanotubes. Without surface modification, the as synthesized LNMO NRs exhibited superior high-capacity compared to the bulk samples. An initial discharge capacity of 172 mAh g(-1) could be delivered at 0.2 C and about 88% capacity retention could be achieved after 100 cycles. The remarkable performance was attributed to the one-dimensional structure assembled with nanoparticles that shows fast Li-intercalation kinetics and high structural stability. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:714 / 718
页数:5
相关论文
共 50 条
  • [41] Synthesis and Electrochemical Properties of LiNi0.5Mn0.5O2 Cathode Materials by a Carbonate Co-precipitation Method
    Yu, Zhiyong
    Cui, Yunjiang
    Liu, Hanxing
    RENEWABLE AND SUSTAINABLE ENERGY, PTS 1-7, 2012, 347-353 : 3497 - 3500
  • [42] Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries
    Kim, Jung-Hyun
    Pieczonka, Nicholas P. W.
    Li, Zicheng
    Wu, Yan
    Harris, Stephen
    Powell, Bob R.
    ELECTROCHIMICA ACTA, 2013, 90 : 556 - 562
  • [43] Structure and properties analysis of yttrium doped high-voltage LiNi0.5Mn1.5O4 cathode materials for Li-ion batteries
    Putra, T. Y. S. Panca
    Salsabila, Nadhifah
    Sudaryanto
    ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, 2024, 15 (03)
  • [44] The effects of quenching treatment and AlF3 coating on LiNi0.5Mn0.5O2 cathode materials for lithium-ion battery
    Lin, Hecheng
    Zheng, Jianming
    Yang, Yong
    MATERIALS CHEMISTRY AND PHYSICS, 2010, 119 (03) : 519 - 523
  • [45] Dependence of property, cathode characteristics, thermodynamic stability, and average and local structures on heat-treatment condition for LiNi0.5Mn0.5O2 as a cathode active material for Li-ion battery
    Kitamura, Naoto
    Hasegawa, Takuya
    Uchimoto, Yoshiharu
    Amezawa, Koji
    Idemoto, Yasushi
    ELECTROCHIMICA ACTA, 2011, 56 (25) : 9453 - 9458
  • [46] Mg gradient-doped LiNi0.5Mn1.5O4 as the cathode material for Li-ion batteries
    Liu, Mao-Huang
    Huang, Hsin-Ta
    Lin, Cong-Min
    Chen, Jin-Ming
    Liao, Shih-Chieh
    ELECTROCHIMICA ACTA, 2014, 120 : 133 - 139
  • [47] Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries
    Fan, Yukai
    Wang, Jianming
    Tang, Zheng
    He, Weichun
    Zhang, Jianqing
    ELECTROCHIMICA ACTA, 2007, 52 (11) : 3870 - 3875
  • [48] Exploring high-voltage fluorinated carbonate electrolytes for LiNi0.5Mn1.5O4 cathode in Li-ion batteries
    Zheng, Xi
    Liao, Ying
    Zhang, Zhongru
    Zhu, Jianping
    Ren, Fucheng
    He, Huajin
    Xiang, Yuxuan
    Zheng, Yezhen
    Yang, Y.
    JOURNAL OF ENERGY CHEMISTRY, 2020, 42 : 62 - 70
  • [49] Influence of the Annealing Temperature to the Properties of LiNi0.5Mn1.5O4 High Voltage Spinel Cathode for Li-Ion Batteries
    Kazda, T.
    Vondrak, J.
    Sedlarikova, M.
    Tichy, J.
    Cudek, P.
    17TH INTERNATIONAL CONFERENCE ON ADVANCED BATTERIES, ACCUMULATORS AND FUEL CELLS (ABAF 2016), 2016, 74 (01): : 199 - 204
  • [50] Facile synthesis of Li2ZrO3-modified LiNi0.5Mn0.5O2 cathode material from a mechanical milling route for lithium-ion batteries
    Yao, Wenli
    Zhang, Huajun
    Zhong, Shengwen
    Li, Jiwen
    Wang, Lingshun
    JOURNAL OF ELECTROCERAMICS, 2019, 43 (1-4) : 84 - 91